Dynamic Q&A multi-label classification based on adaptive multi-scale feature extraction

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ying Li, Ming Li, Xiaoyi Zhang, Jin Ding
{"title":"Dynamic Q&A multi-label classification based on adaptive multi-scale feature extraction","authors":"Ying Li,&nbsp;Ming Li,&nbsp;Xiaoyi Zhang,&nbsp;Jin Ding","doi":"10.1016/j.asoc.2025.112740","DOIUrl":null,"url":null,"abstract":"<div><div>In community question answering (CQA), questioners use labels for question and answer (Q&amp;A) classification when asking questions. Since the answerers do not have the same understanding and perspective of the question, the original labels cannot accurately reflect the Q&amp;A categories with constantly given answers. Therefore, this paper proposes a dynamic Q&amp;A multi-label classification approach based on adaptive multi-scale feature extraction. First, global and local semantic features of Q&amp;As are extracted based on bidirectional long short-term memory network and convolutional neural network models, respectively. Second, the label features extraction and fusion method is proposed. The semantic features of the labels are extracted, the label structure graph based on horizontal and vertical dependencies is constructed, and the label structure and semantic features are fused using the graph attention network integrating multi-head self-attention mechanism. Afterward, the label-aware local features of Q&amp;As are constructed using the attention mechanism and fused with global features of Q&amp;A using the multi-head self-attention, thereby multi-scale fusion classification features of Q&amp;A are established. Then, to adaptively extract the core multi-scale fusion features, a multi-objective feature selection model is established and an improved binary multi-objective Sinh Cosh optimizer algorithm is proposed to solve the model. Finally, a classification prediction layer based on a multilayer perceptron is constructed to obtain the multi-label classification results of Q&amp;A documents. The experimental results based on real Q&amp;A data show the superior performance of the proposed method and validate the effectiveness of the proposed four modules.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"170 ","pages":"Article 112740"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625000511","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In community question answering (CQA), questioners use labels for question and answer (Q&A) classification when asking questions. Since the answerers do not have the same understanding and perspective of the question, the original labels cannot accurately reflect the Q&A categories with constantly given answers. Therefore, this paper proposes a dynamic Q&A multi-label classification approach based on adaptive multi-scale feature extraction. First, global and local semantic features of Q&As are extracted based on bidirectional long short-term memory network and convolutional neural network models, respectively. Second, the label features extraction and fusion method is proposed. The semantic features of the labels are extracted, the label structure graph based on horizontal and vertical dependencies is constructed, and the label structure and semantic features are fused using the graph attention network integrating multi-head self-attention mechanism. Afterward, the label-aware local features of Q&As are constructed using the attention mechanism and fused with global features of Q&A using the multi-head self-attention, thereby multi-scale fusion classification features of Q&A are established. Then, to adaptively extract the core multi-scale fusion features, a multi-objective feature selection model is established and an improved binary multi-objective Sinh Cosh optimizer algorithm is proposed to solve the model. Finally, a classification prediction layer based on a multilayer perceptron is constructed to obtain the multi-label classification results of Q&A documents. The experimental results based on real Q&A data show the superior performance of the proposed method and validate the effectiveness of the proposed four modules.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信