Probing DCV5T-Me for Organic Photovoltaics: A Comprehensive DFT and NEGF Study

IF 4.3 Q2 CHEMISTRY, PHYSICAL
Souraya Goumri-Said , Rachida Rahmani , Abdelkader Chouaih , Mohammed Benali Kanoun
{"title":"Probing DCV5T-Me for Organic Photovoltaics: A Comprehensive DFT and NEGF Study","authors":"Souraya Goumri-Said ,&nbsp;Rachida Rahmani ,&nbsp;Abdelkader Chouaih ,&nbsp;Mohammed Benali Kanoun","doi":"10.1016/j.chphi.2025.100842","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a detailed computational analysis of the DCV5T-Me molecule to evaluate its potential for organic photovoltaic (OPV) applications. The optimized geometry demonstrates a stable donor-acceptor structure with well-aligned molecular orbitals conducive to charge transfer. Electronic structure calculations reveal a HOMO-LUMO energy gap of ∼1.89 eV, aligning with strong absorption in the visible and near-infrared regions, with a maximum absorption wavelength around 650 nm. Time-dependent density functional theory (TD-DFT) confirms significant intramolecular charge transfer excitations, characterized by high oscillator strengths and transition dipole moments. Transport property analysis highlights robust molecule-electrode coupling, facilitating efficient charge injection and tunneling through low-energy barrier flow. Molecular device simulations show high current densities under applied bias, indicating efficient charge transport through the molecular junction. These results suggest that DCV5T-Me possesses the structural and electronic attributes necessary for high-power conversion efficiency, making it a competitive candidate for next-generation non-fullerene OPV devices.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100842"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a detailed computational analysis of the DCV5T-Me molecule to evaluate its potential for organic photovoltaic (OPV) applications. The optimized geometry demonstrates a stable donor-acceptor structure with well-aligned molecular orbitals conducive to charge transfer. Electronic structure calculations reveal a HOMO-LUMO energy gap of ∼1.89 eV, aligning with strong absorption in the visible and near-infrared regions, with a maximum absorption wavelength around 650 nm. Time-dependent density functional theory (TD-DFT) confirms significant intramolecular charge transfer excitations, characterized by high oscillator strengths and transition dipole moments. Transport property analysis highlights robust molecule-electrode coupling, facilitating efficient charge injection and tunneling through low-energy barrier flow. Molecular device simulations show high current densities under applied bias, indicating efficient charge transport through the molecular junction. These results suggest that DCV5T-Me possesses the structural and electronic attributes necessary for high-power conversion efficiency, making it a competitive candidate for next-generation non-fullerene OPV devices.

Abstract Image

有机光伏的DCV5T-Me探测:DFT和NEGF的综合研究
本研究对DCV5T-Me分子进行了详细的计算分析,以评估其在有机光伏(OPV)应用中的潜力。优化后的结构显示出稳定的供体-受体结构,分子轨道排列良好,有利于电荷转移。电子结构计算表明,HOMO-LUMO的能隙为1.89 eV,在可见光和近红外区域具有强吸收,最大吸收波长约为650 nm。时间依赖的密度泛函理论(TD-DFT)证实了分子内显著的电荷转移激发,其特征是高振子强度和跃迁偶极矩。输运特性分析强调了强大的分子-电极耦合,促进了高效的电荷注入和通过低能势垒流的隧道。分子器件模拟显示,在施加偏置的情况下,电流密度很高,表明电荷通过分子结的传输效率很高。这些结果表明,DCV5T-Me具有高功率转换效率所需的结构和电子属性,使其成为下一代非富勒烯OPV器件的竞争候选人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信