Hybridization of DEBOHID with ENN algorithm for highly imbalanced datasets

IF 5.1 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Sedat Korkmaz
{"title":"Hybridization of DEBOHID with ENN algorithm for highly imbalanced datasets","authors":"Sedat Korkmaz","doi":"10.1016/j.jestch.2025.101976","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning algorithms assume that datasets are balanced, but most of the datasets in the real world are imbalanced. Class imbalance is a major challenge in machine learning and data mining. Oversampling and undersampling methods are commonly used to address this issue. Edited Nearest Neighbor (ENN) and Synthetic Minority Oversampling Technique (SMOTE) are essential methods for undersampling and oversampling, respectively. DEBOHID is a recently proposed differential evolution-based oversampling approach for highly imbalanced datasets. In this work, DEBOHID and ENN methods are combined to present a novel hybrid method called D-ENN. The performance of D-ENN was evaluated using 44 highly imbalanced datasets. A parameter analysis was conducted on D-ENN to determine the optimal values for the F, CR and D-ENN-Type parameters. Three classifiers were used in the study: Support Vector Machines (SVM), Decision Tree (DT), and K-nearest Neighbor (kNN), and reported their G-mean and Area Under Curve (AUC) values. Upon evaluation of the average Winner, Mean Rank and Final Rank values obtained for each classifier and metric pair, the proposed D-ENN method demonstrated superior performance compared to nine state-of-the-art sampling methods, with an average Winner value of 13, an average Mean Rank value of 3.40 and an average Final Rank value of 1.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"63 ","pages":"Article 101976"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221509862500031X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning algorithms assume that datasets are balanced, but most of the datasets in the real world are imbalanced. Class imbalance is a major challenge in machine learning and data mining. Oversampling and undersampling methods are commonly used to address this issue. Edited Nearest Neighbor (ENN) and Synthetic Minority Oversampling Technique (SMOTE) are essential methods for undersampling and oversampling, respectively. DEBOHID is a recently proposed differential evolution-based oversampling approach for highly imbalanced datasets. In this work, DEBOHID and ENN methods are combined to present a novel hybrid method called D-ENN. The performance of D-ENN was evaluated using 44 highly imbalanced datasets. A parameter analysis was conducted on D-ENN to determine the optimal values for the F, CR and D-ENN-Type parameters. Three classifiers were used in the study: Support Vector Machines (SVM), Decision Tree (DT), and K-nearest Neighbor (kNN), and reported their G-mean and Area Under Curve (AUC) values. Upon evaluation of the average Winner, Mean Rank and Final Rank values obtained for each classifier and metric pair, the proposed D-ENN method demonstrated superior performance compared to nine state-of-the-art sampling methods, with an average Winner value of 13, an average Mean Rank value of 3.40 and an average Final Rank value of 1.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Science and Technology-An International Journal-Jestech
Engineering Science and Technology-An International Journal-Jestech Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.20
自引率
3.50%
发文量
153
审稿时长
22 days
期刊介绍: Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology. The scope of JESTECH includes a wide spectrum of subjects including: -Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing) -Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences) -Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信