Molecular mechanisms underlying the decolorization of indigo carmine and coomassie blue R-250 by Streptomyces salinarius CS29 laccase

IF 3.4 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Kamonpan Sanachai , Bodee Nutho , Rakrudee Sarnthima , Wiyada Mongkolthanaruk , Jirada Pluemjai , Methus Kittika , Saranyu Khammuang
{"title":"Molecular mechanisms underlying the decolorization of indigo carmine and coomassie blue R-250 by Streptomyces salinarius CS29 laccase","authors":"Kamonpan Sanachai ,&nbsp;Bodee Nutho ,&nbsp;Rakrudee Sarnthima ,&nbsp;Wiyada Mongkolthanaruk ,&nbsp;Jirada Pluemjai ,&nbsp;Methus Kittika ,&nbsp;Saranyu Khammuang","doi":"10.1016/j.bcab.2025.103513","DOIUrl":null,"url":null,"abstract":"<div><div>Laccase, a multicopper oxidase enzyme, possesses broad substrate specificity, enabling the oxidation of a diverse array of compounds. Among various microbial sources, <em>Streptomyces</em> species are prominent for producing stable and highly efficient laccases. This study investigated the decolorization potential of crude laccase extracted from <em>Streptomyces salinarius</em> CS29, specifically targeting indigo carmine and Coomassie Blue R-250 (CBBR). Optimal decolorization of both dyes was achieved within a pH range of 3–3.5, with pH 3.5 selected for subsequent experiments. Indigo carmine, at a concentration of 100 μM, demonstrated superior decolorization efficiency, reaching approximately 90% within 100 min. In contrast, decolorization of CBBR was less efficient. At concentrations of 50, 100, and 250 μM, approximately 50% decolorization was observed after 180 min. These findings suggest that laccase from <em>S. salinarius</em> CS29 exhibits greater efficacy in decolorizing indigo carmine compared to CBBR. Additionally, molecular docking and molecular dynamics (MD) simulations were employed to investigate the structural dynamics of the enzyme-dye complexes. MD simulations revealed that both indigo carmine and CBBR bind within the active site of the enzyme, predominantly through van der Waals interactions. Furthermore, key binding residues crucial for these interactions were identified. The findings of this study offer a foundational understanding that could significantly contribute to the development of environmentally sustainable strategies for the detoxification of dye-contaminated wastewater.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"64 ","pages":"Article 103513"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187881812500026X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Laccase, a multicopper oxidase enzyme, possesses broad substrate specificity, enabling the oxidation of a diverse array of compounds. Among various microbial sources, Streptomyces species are prominent for producing stable and highly efficient laccases. This study investigated the decolorization potential of crude laccase extracted from Streptomyces salinarius CS29, specifically targeting indigo carmine and Coomassie Blue R-250 (CBBR). Optimal decolorization of both dyes was achieved within a pH range of 3–3.5, with pH 3.5 selected for subsequent experiments. Indigo carmine, at a concentration of 100 μM, demonstrated superior decolorization efficiency, reaching approximately 90% within 100 min. In contrast, decolorization of CBBR was less efficient. At concentrations of 50, 100, and 250 μM, approximately 50% decolorization was observed after 180 min. These findings suggest that laccase from S. salinarius CS29 exhibits greater efficacy in decolorizing indigo carmine compared to CBBR. Additionally, molecular docking and molecular dynamics (MD) simulations were employed to investigate the structural dynamics of the enzyme-dye complexes. MD simulations revealed that both indigo carmine and CBBR bind within the active site of the enzyme, predominantly through van der Waals interactions. Furthermore, key binding residues crucial for these interactions were identified. The findings of this study offer a foundational understanding that could significantly contribute to the development of environmentally sustainable strategies for the detoxification of dye-contaminated wastewater.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biocatalysis and agricultural biotechnology
Biocatalysis and agricultural biotechnology Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
7.70
自引率
2.50%
发文量
308
审稿时长
48 days
期刊介绍: Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信