Timing of the switchover from thrusting to normal faulting in the Cretan nappe pile, Greece

IF 2.7 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Uwe Ring , Charalampos Fassoulas , I. Tonguç Uysal , Johannes Glodny , Kui Tong , Andrew Todd
{"title":"Timing of the switchover from thrusting to normal faulting in the Cretan nappe pile, Greece","authors":"Uwe Ring ,&nbsp;Charalampos Fassoulas ,&nbsp;I. Tonguç Uysal ,&nbsp;Johannes Glodny ,&nbsp;Kui Tong ,&nbsp;Andrew Todd","doi":"10.1016/j.tecto.2025.230652","DOIUrl":null,"url":null,"abstract":"<div><div>Contractional faults and shear zones are often reactivated by normal faulting and the timing of this kinematic switchover is critical for better understanding orogeny, especially the formation and exhumation of high-pressure rocks. We report two fault gouge ages of ∼30 and ∼25 Ma from the contact zone between the high-pressure Phyllite-Quartzite Unit and the overlying, weakly metamorphosed Tripolitza Nappe in central Crete, southern Aegean Sea, Greece. This contact, the Damasta shear zone, is commonly regarded as a segment of the Cretan Detachment, the age of which is not well known. The dated gouge dominantly shows early top-to-the-S kinematic indicators, with some indication of a top-to-the-N reactivation. Illite/muscovite grain-size fractions of 0.5–0.2 μm and 0.2–0.1 μm yielded, within error, similar K<img>Ar ages of ∼30 Ma. These internally consistent ages can be interpreted as the timing of a first faulting event, which we interpret to be associated with the dominant set of top-to-the-S kinematic indicators. Three K<img>Ar ages of ∼25 Ma were obtained from two separate &lt;0.1 μm and a single &lt;0.2 μm grain-size fraction. This robust age of the finest grain-size fractions reflects the final faulting increment, considered to date top-to-the N normal shearing. Because the ∼25 Ma age overlaps with high-pressure metamorphism and subsequent rapid exhumation of the Phyllite-Quartzite Unit, we regard the age to be related to the Cretan Detachment in central Crete. Published data show that the upper parts of the Phyllite-Quartzite Unit started to be underthrust to the north between 36 and 29 Ma. Therefore, we relate the fault gouge ages of ∼30 Ma to this underthrusting event. We conclude that the switchover from contractional to normal faulting on the Cretan Detachment occurred at about 25 Ma.</div></div>","PeriodicalId":22257,"journal":{"name":"Tectonophysics","volume":"899 ","pages":"Article 230652"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040195125000381","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Contractional faults and shear zones are often reactivated by normal faulting and the timing of this kinematic switchover is critical for better understanding orogeny, especially the formation and exhumation of high-pressure rocks. We report two fault gouge ages of ∼30 and ∼25 Ma from the contact zone between the high-pressure Phyllite-Quartzite Unit and the overlying, weakly metamorphosed Tripolitza Nappe in central Crete, southern Aegean Sea, Greece. This contact, the Damasta shear zone, is commonly regarded as a segment of the Cretan Detachment, the age of which is not well known. The dated gouge dominantly shows early top-to-the-S kinematic indicators, with some indication of a top-to-the-N reactivation. Illite/muscovite grain-size fractions of 0.5–0.2 μm and 0.2–0.1 μm yielded, within error, similar KAr ages of ∼30 Ma. These internally consistent ages can be interpreted as the timing of a first faulting event, which we interpret to be associated with the dominant set of top-to-the-S kinematic indicators. Three KAr ages of ∼25 Ma were obtained from two separate <0.1 μm and a single <0.2 μm grain-size fraction. This robust age of the finest grain-size fractions reflects the final faulting increment, considered to date top-to-the N normal shearing. Because the ∼25 Ma age overlaps with high-pressure metamorphism and subsequent rapid exhumation of the Phyllite-Quartzite Unit, we regard the age to be related to the Cretan Detachment in central Crete. Published data show that the upper parts of the Phyllite-Quartzite Unit started to be underthrust to the north between 36 and 29 Ma. Therefore, we relate the fault gouge ages of ∼30 Ma to this underthrusting event. We conclude that the switchover from contractional to normal faulting on the Cretan Detachment occurred at about 25 Ma.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tectonophysics
Tectonophysics 地学-地球化学与地球物理
CiteScore
4.90
自引率
6.90%
发文量
300
审稿时长
6 months
期刊介绍: The prime focus of Tectonophysics will be high-impact original research and reviews in the fields of kinematics, structure, composition, and dynamics of the solid arth at all scales. Tectonophysics particularly encourages submission of papers based on the integration of a multitude of geophysical, geological, geochemical, geodynamic, and geotectonic methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信