{"title":"RootEx: An automated method for barley root system extraction and evaluation","authors":"Maichol Dadi, Alessandra Lumini, Annalisa Franco","doi":"10.1016/j.compag.2025.110030","DOIUrl":null,"url":null,"abstract":"<div><div>Plant phenotyping plays a crucial role in agricultural research, especially in identifying resilient traits essential for global food security. Quantitative analysis of root growth has become increasingly vital in evaluating a plant’s resilience to abiotic stresses and its efficiency in nutrient and water absorption. However, extracting features from root images presents substantial challenges due to the complexity of root structures, variations in size, background noise, occlusions, clutter, and inconsistent lighting conditions.</div><div>In this study, we introduce “RootEx”, a comprehensive automated approach for extracting barley plant root systems from high-resolution images acquired from 2D root phenotyping systems set up in transparent growing mediums. Our method involves several stages, beginning with preprocessing to identify the Region of Interest (ROI). Subsequent stages utilize deep neural network-based segmentation, skeleton construction, and graph generation to produce detailed representations of root systems stored in RSML format. Notably, our dataset exclusively comprises primary roots without secondary roots or bifurcations, allowing for a focused examination of primary root characteristics and environmental adaptability.</div><div>Evaluation against established methods, RootNav 1.8 and 2.0, reveals significant improvements in root system reconstruction accuracy across various performance indicators. Although RootEx may exhibit slightly lower performance due to the absence of neural network-based tip detection, its advantages include minimal losses in missing root lengths and independence from dedicated training datasets. Our approach effectively mitigates detection errors, providing a reliable tool for precise barley root analysis in agricultural research.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"230 ","pages":"Article 110030"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016816992500136X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant phenotyping plays a crucial role in agricultural research, especially in identifying resilient traits essential for global food security. Quantitative analysis of root growth has become increasingly vital in evaluating a plant’s resilience to abiotic stresses and its efficiency in nutrient and water absorption. However, extracting features from root images presents substantial challenges due to the complexity of root structures, variations in size, background noise, occlusions, clutter, and inconsistent lighting conditions.
In this study, we introduce “RootEx”, a comprehensive automated approach for extracting barley plant root systems from high-resolution images acquired from 2D root phenotyping systems set up in transparent growing mediums. Our method involves several stages, beginning with preprocessing to identify the Region of Interest (ROI). Subsequent stages utilize deep neural network-based segmentation, skeleton construction, and graph generation to produce detailed representations of root systems stored in RSML format. Notably, our dataset exclusively comprises primary roots without secondary roots or bifurcations, allowing for a focused examination of primary root characteristics and environmental adaptability.
Evaluation against established methods, RootNav 1.8 and 2.0, reveals significant improvements in root system reconstruction accuracy across various performance indicators. Although RootEx may exhibit slightly lower performance due to the absence of neural network-based tip detection, its advantages include minimal losses in missing root lengths and independence from dedicated training datasets. Our approach effectively mitigates detection errors, providing a reliable tool for precise barley root analysis in agricultural research.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.