An-liang YE , Meng WANG , Yan-bin JIANG , Xiao-zan WU , Chao-qun PENG , Jin HE , Xiao-feng WANG
{"title":"Additive manufacturing of pure copper via vat photopolymerization with slurry","authors":"An-liang YE , Meng WANG , Yan-bin JIANG , Xiao-zan WU , Chao-qun PENG , Jin HE , Xiao-feng WANG","doi":"10.1016/S1003-6326(24)66653-7","DOIUrl":null,"url":null,"abstract":"<div><div>Stereolithography (SLA) combined with a two-step post-processing method “oxidation−reduction” was developed to fabricate pure copper with high complexity. The copper slurries for SLA were prepared, and particularly the influence of volume fraction of copper on the properties of copper slurries was investigated. In the two-step post-treatment process, organics were removed by oxidation and copper powder was oxidized simultaneously, and then the oxidized copper was reduced into highly reactive copper particles, improving the sintering activity of the copper green body and enhancing the relative density of the sintered part. The results show that curing depth of the copper slurries decreased with the increase of volume fraction of copper. The viscosity of the pure copper slurry rises exponentially as the volume fraction of copper exceeded 50%. The highest volume fraction of pure copper slurry for SLA is 55%. The specimens exhibited an increase in hardness and electrical conductivity with the increase of volume fraction of copper. Specifically, the maximum values of hardness and conductivity of samples with 55 vol.% copper were HV 52.7 and 57.1%(IACS), respectively.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 12","pages":"Pages 3992-4004"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624666537","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Stereolithography (SLA) combined with a two-step post-processing method “oxidation−reduction” was developed to fabricate pure copper with high complexity. The copper slurries for SLA were prepared, and particularly the influence of volume fraction of copper on the properties of copper slurries was investigated. In the two-step post-treatment process, organics were removed by oxidation and copper powder was oxidized simultaneously, and then the oxidized copper was reduced into highly reactive copper particles, improving the sintering activity of the copper green body and enhancing the relative density of the sintered part. The results show that curing depth of the copper slurries decreased with the increase of volume fraction of copper. The viscosity of the pure copper slurry rises exponentially as the volume fraction of copper exceeded 50%. The highest volume fraction of pure copper slurry for SLA is 55%. The specimens exhibited an increase in hardness and electrical conductivity with the increase of volume fraction of copper. Specifically, the maximum values of hardness and conductivity of samples with 55 vol.% copper were HV 52.7 and 57.1%(IACS), respectively.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.