Experimental study on permeability evolution of deep high-stressed coal under major horizontal stress unloading paths

IF 11.7 1区 工程技术 Q1 MINING & MINERAL PROCESSING
Chao Liu , Jiahao Zhang , Songwei Wu , Jinghua Qi , Beichen Yu , Liang Wang
{"title":"Experimental study on permeability evolution of deep high-stressed coal under major horizontal stress unloading paths","authors":"Chao Liu ,&nbsp;Jiahao Zhang ,&nbsp;Songwei Wu ,&nbsp;Jinghua Qi ,&nbsp;Beichen Yu ,&nbsp;Liang Wang","doi":"10.1016/j.ijmst.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>Both bulk stress (<em>σ<sub>ii</sub></em>) and stress path (SP) significantly affect the transportation characteristics of deep gas during reservoir pressure depletion. Therefore, the experimental study of horizontal stress unloading on seepage behavior of gas-bearing coal under constant <em>σ<sub>ii</sub></em>-constraints is performed. The results show that coal permeability is affected by horizontal stress anisotropy (<em>σ</em><sub>H</sub>≠<em>σ</em><sub>h</sub>), and the contribution of minor horizontal stress to permeability is related to the differential response of horizontal strain. The slippage phenomenon is prominent in deep high-stress regime, especially in low reservoir pressure. <em>σ<sub>ii</sub></em> and SP jointly determine the manifestation of slippage effect and the strength of stress sensitivity (<em>γ</em>) of permeability. Deep reservoir implies an incremental percentage of slip-based permeability, and SP weakens the slippage effect by changing the elastic–plastic state of coal. However, <em>γ</em> is negatively correlated with slippage effect. From the Walsh model, narrow (low aspect-ratio) fractures within the coal under unloading SP became the main channel for gas seepage, and bring the effective stress coefficient of permeability (<em>χ</em>) less than 1 for both low-stress elastic and high-stress damaged coal. With the raise of the effective stress, the effect of pore-lined clay particles on permeability was enhanced, inducing an increase in <em>χ</em> for high-stress elastic coal.</div></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 11","pages":"Pages 1495-1508"},"PeriodicalIF":11.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268624001538","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

Abstract

Both bulk stress (σii) and stress path (SP) significantly affect the transportation characteristics of deep gas during reservoir pressure depletion. Therefore, the experimental study of horizontal stress unloading on seepage behavior of gas-bearing coal under constant σii-constraints is performed. The results show that coal permeability is affected by horizontal stress anisotropy (σHσh), and the contribution of minor horizontal stress to permeability is related to the differential response of horizontal strain. The slippage phenomenon is prominent in deep high-stress regime, especially in low reservoir pressure. σii and SP jointly determine the manifestation of slippage effect and the strength of stress sensitivity (γ) of permeability. Deep reservoir implies an incremental percentage of slip-based permeability, and SP weakens the slippage effect by changing the elastic–plastic state of coal. However, γ is negatively correlated with slippage effect. From the Walsh model, narrow (low aspect-ratio) fractures within the coal under unloading SP became the main channel for gas seepage, and bring the effective stress coefficient of permeability (χ) less than 1 for both low-stress elastic and high-stress damaged coal. With the raise of the effective stress, the effect of pore-lined clay particles on permeability was enhanced, inducing an increase in χ for high-stress elastic coal.
主要水平卸压路径下深部高应力煤渗透率演化试验研究
体应力(σii)和应力路径(SP)对气藏压力衰竭过程中深层天然气输运特征均有显著影响。为此,进行了恒定σii约束下水平应力卸载对含气煤渗流特性的试验研究。结果表明:煤的渗透率受水平应力各向异性(σH≠σH)的影响,小水平应力对渗透率的贡献与水平应变的微分响应有关;在深部高应力区,特别是低储层压力区,滑脱现象较为突出。σii和SP共同决定了滑移效应的表现和渗透率的应力敏感强度(γ)。深层储层的滑基渗透率百分比增加,SP通过改变煤的弹塑性状态来减弱滑动效应。而γ与滑移效应呈负相关。从Walsh模型看,卸荷SP下煤体内部狭窄(低纵横比)裂隙成为瓦斯渗流的主要通道,低应力弹性和高应力损伤煤体的有效渗透应力系数(χ)均小于1。随着有效应力的增大,衬孔粘土颗粒对渗透率的影响增强,导致高应力弹性煤的χ增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mining Science and Technology
International Journal of Mining Science and Technology Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
19.10
自引率
11.90%
发文量
2541
审稿时长
44 days
期刊介绍: The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信