Siqi Yang , Xianping Luo , Rufeng Chen , Louyan Shen , Xun Fan , Jiancheng Miao , Xuekun Tang
{"title":"Advancing green flotation: Separation of Cu-Pb minerals through the application of eco-friendly organic double reaction group depressant","authors":"Siqi Yang , Xianping Luo , Rufeng Chen , Louyan Shen , Xun Fan , Jiancheng Miao , Xuekun Tang","doi":"10.1016/j.ijmst.2024.11.005","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving efficient flotation separation of chalcopyrite and galena while maintaining environmental friendliness poses a challenge. This study utilized the environmentally friendly copolymer acrylic acid-2-acrylamide-2-methylpropanesulfonic acid (AA/AMPS) as a depressant to separate chalcopyrite and galena. Flotation tests revealed a significant reduction in galena recovery when AA/AMPS was employed, with minimal impact observed on chalcopyrite. In artificial mixed ore flotation, AA/AMPS was found to enhance the efficiency of copper and lead separation, surpassing K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>. Furthermore, the effectiveness of AA/AMPS in facilitating copper-lead separation has been validated in practical ore flotation. The presence of AA/AMPS inhibited the adsorption of SBX onto galena, as confirmed by zeta potential and contact angle measurements. However, the adsorption on chalcopyrite remained unaffected. Through analyses using Atomic Force Microscope, X-ray photoelectron spectroscopy, and Density Functional Theory, a robust chemical interaction between the reactive groups in AA/AMPS and Pb sites on galena was uncovered, resulting in the formation of a hydrophilic polymer layer. This layer impedes SBX adsorption and reduces galena’s floatability. In contrast, no significant chemical adsorption was observed between AA/AMPS and Cu and Fe sites on chalcopyrite, preserving its SBX affinity. Overall, AA/AMPS shows promise in replacing traditional depressants for Cu-Pb sulfide ore separation, enhancing environmental sustainability.</div></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 11","pages":"Pages 1599-1611"},"PeriodicalIF":11.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268624001617","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving efficient flotation separation of chalcopyrite and galena while maintaining environmental friendliness poses a challenge. This study utilized the environmentally friendly copolymer acrylic acid-2-acrylamide-2-methylpropanesulfonic acid (AA/AMPS) as a depressant to separate chalcopyrite and galena. Flotation tests revealed a significant reduction in galena recovery when AA/AMPS was employed, with minimal impact observed on chalcopyrite. In artificial mixed ore flotation, AA/AMPS was found to enhance the efficiency of copper and lead separation, surpassing K2Cr2O7. Furthermore, the effectiveness of AA/AMPS in facilitating copper-lead separation has been validated in practical ore flotation. The presence of AA/AMPS inhibited the adsorption of SBX onto galena, as confirmed by zeta potential and contact angle measurements. However, the adsorption on chalcopyrite remained unaffected. Through analyses using Atomic Force Microscope, X-ray photoelectron spectroscopy, and Density Functional Theory, a robust chemical interaction between the reactive groups in AA/AMPS and Pb sites on galena was uncovered, resulting in the formation of a hydrophilic polymer layer. This layer impedes SBX adsorption and reduces galena’s floatability. In contrast, no significant chemical adsorption was observed between AA/AMPS and Cu and Fe sites on chalcopyrite, preserving its SBX affinity. Overall, AA/AMPS shows promise in replacing traditional depressants for Cu-Pb sulfide ore separation, enhancing environmental sustainability.
期刊介绍:
The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.