Majid Rafiei, Mahsa Pourbafrani, Wil M.P. van der Aalst
{"title":"Federated conformance checking","authors":"Majid Rafiei, Mahsa Pourbafrani, Wil M.P. van der Aalst","doi":"10.1016/j.is.2025.102525","DOIUrl":null,"url":null,"abstract":"<div><div>Conformance checking is a crucial aspect of process mining, where the main objective is to compare the actual execution of a process, as recorded in an event log, with a reference process model, e.g., in the form of a Petri net or a BPMN. Conformance checking enables identifying deviations, anomalies, or non-compliance instances. It offers different perspectives on problems in processes, bottlenecks, or process instances that are not compliant with the model. Performing conformance checking in federated (inter-organizational) settings allows organizations to gain insights into the overall process execution and to identify compliance issues across organizational boundaries, which facilitates process improvement efforts among collaborating entities. In this paper, we propose <em>a privacy-aware federated conformance-checking approach</em> that allows for evaluating the correctness of overall cross-organizational process models, identifying miscommunications, and quantifying their costs. For evaluation, we design and simulate a supply chain process with three organizations engaged in purchase-to-pay, order-to-cash, and shipment processes. We generate synthetic event logs for each organization as well as the complete process, and we apply our approach to identify and evaluate the cost of pre-injected miscommunications.</div></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"131 ","pages":"Article 102525"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437925000109","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Conformance checking is a crucial aspect of process mining, where the main objective is to compare the actual execution of a process, as recorded in an event log, with a reference process model, e.g., in the form of a Petri net or a BPMN. Conformance checking enables identifying deviations, anomalies, or non-compliance instances. It offers different perspectives on problems in processes, bottlenecks, or process instances that are not compliant with the model. Performing conformance checking in federated (inter-organizational) settings allows organizations to gain insights into the overall process execution and to identify compliance issues across organizational boundaries, which facilitates process improvement efforts among collaborating entities. In this paper, we propose a privacy-aware federated conformance-checking approach that allows for evaluating the correctness of overall cross-organizational process models, identifying miscommunications, and quantifying their costs. For evaluation, we design and simulate a supply chain process with three organizations engaged in purchase-to-pay, order-to-cash, and shipment processes. We generate synthetic event logs for each organization as well as the complete process, and we apply our approach to identify and evaluate the cost of pre-injected miscommunications.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.