Ana Pascual-Garrigos, Beatriz Lozano-Torres, Akashaditya Das, Jennifer C. Molloy
{"title":"Colorimetric CRISPR Biosensor: A Case Study with Salmonella Typhi","authors":"Ana Pascual-Garrigos, Beatriz Lozano-Torres, Akashaditya Das, Jennifer C. Molloy","doi":"10.1021/acssensors.4c02029","DOIUrl":null,"url":null,"abstract":"There is a critical need to implement a sensitive and specific point-of-care (POC) biosensor that addresses the instrument limitations and manufacturing challenges faced in resource-constrained contexts. In this paper we focus on enteric fever which is a highly contagious and prevalent infection in low- and middle-income countries. Although easily treatable, its ambiguous symptoms paired with a lack of fast, accurate and affordable diagnostics lead to incorrect treatments which exacerbate the disease burden, including increasing antibiotic resistance. In this study, we develop a readout module for CRISPR-Cas12a that produces a colorimetric output that is visible to the naked eye and can act as a cascade signal amplifier in any CRISPR assay based on trans-cleavage. We achieve this by immobilizing an oligo covalently linked to a β-galactosidase (LacZ) enzyme, which is cleaved in the presence of DNA target-activated CRISPR-Cas12a. Upon cleavage, the colorimetric enzyme is released, and the supernatant transferred to an environment containing X-Gal producing an intense blue color. This method is capable of detecting amplified bacterial genomic DNA and has a lower limit of detection (LoD) to standard fluorescent assays while removing the requirement for costly equipment. Furthermore, it remained active 4 weeks after lyophilization, allowing for the possibility of shipment without cold chain, significantly reducing deployment costs.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"47 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02029","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
There is a critical need to implement a sensitive and specific point-of-care (POC) biosensor that addresses the instrument limitations and manufacturing challenges faced in resource-constrained contexts. In this paper we focus on enteric fever which is a highly contagious and prevalent infection in low- and middle-income countries. Although easily treatable, its ambiguous symptoms paired with a lack of fast, accurate and affordable diagnostics lead to incorrect treatments which exacerbate the disease burden, including increasing antibiotic resistance. In this study, we develop a readout module for CRISPR-Cas12a that produces a colorimetric output that is visible to the naked eye and can act as a cascade signal amplifier in any CRISPR assay based on trans-cleavage. We achieve this by immobilizing an oligo covalently linked to a β-galactosidase (LacZ) enzyme, which is cleaved in the presence of DNA target-activated CRISPR-Cas12a. Upon cleavage, the colorimetric enzyme is released, and the supernatant transferred to an environment containing X-Gal producing an intense blue color. This method is capable of detecting amplified bacterial genomic DNA and has a lower limit of detection (LoD) to standard fluorescent assays while removing the requirement for costly equipment. Furthermore, it remained active 4 weeks after lyophilization, allowing for the possibility of shipment without cold chain, significantly reducing deployment costs.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.