Experimental simulation of daemonic work extraction in open quantum batteries on a digital quantum computer

IF 5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Seyed Navid Elyasi, Matteo A C Rossi and Marco G Genoni
{"title":"Experimental simulation of daemonic work extraction in open quantum batteries on a digital quantum computer","authors":"Seyed Navid Elyasi, Matteo A C Rossi and Marco G Genoni","doi":"10.1088/2058-9565/adae2d","DOIUrl":null,"url":null,"abstract":"The possibility of extracting more work from a physical system thanks to the information obtained from measurements has been a topic of fundamental interest in the context of thermodynamics since the formulation of the Maxwell’s demon thought experiment. We here consider this problem from the perspective of an open quantum battery interacting with an environment that can be continuously measured. By modeling it via a continuously monitored collisional model, we show how to implement the corresponding dynamics as a quantum circuit, including the final conditional feedback unitary evolution that allows to enhance the amount of work extracted. By exploiting the flexibility of IBM quantum computers and by properly modelling the corresponding quantum circuit, we experimentally simulate the work extraction protocol showing how the obtained experimental values of the daemonic extracted work are close to their theoretical upper bound quantified by the so-called daemonic ergotropy. We also demonstrate how by properly modelling the noise affecting the quantum circuit, one can improve the work extraction protocol by optimizing the corresponding extraction unitary feedback operation.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"55 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adae2d","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The possibility of extracting more work from a physical system thanks to the information obtained from measurements has been a topic of fundamental interest in the context of thermodynamics since the formulation of the Maxwell’s demon thought experiment. We here consider this problem from the perspective of an open quantum battery interacting with an environment that can be continuously measured. By modeling it via a continuously monitored collisional model, we show how to implement the corresponding dynamics as a quantum circuit, including the final conditional feedback unitary evolution that allows to enhance the amount of work extracted. By exploiting the flexibility of IBM quantum computers and by properly modelling the corresponding quantum circuit, we experimentally simulate the work extraction protocol showing how the obtained experimental values of the daemonic extracted work are close to their theoretical upper bound quantified by the so-called daemonic ergotropy. We also demonstrate how by properly modelling the noise affecting the quantum circuit, one can improve the work extraction protocol by optimizing the corresponding extraction unitary feedback operation.
数字量子计算机上开放量子电池守护功提取的实验模拟
自从麦克斯韦妖思想实验形成以来,利用测量得到的信息从物理系统中提取更多功的可能性一直是热力学背景下的一个基本兴趣话题。我们从开放量子电池与可连续测量的环境相互作用的角度来考虑这个问题。通过对连续监测的碰撞模型进行建模,我们展示了如何将相应的动力学作为量子电路实现,包括最终的条件反馈统一进化,从而提高提取的工作量。通过利用IBM量子计算机的灵活性,并通过适当地模拟相应的量子电路,我们实验模拟了功提取协议,显示了所获得的daemonic提取功的实验值如何接近由所谓的daemonic自向性量化的理论上限。我们还演示了如何通过正确建模影响量子电路的噪声,通过优化相应的提取酉反馈操作来改进功提取协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信