Simple, fast, and energy saving: Room temperature synthesis of high-entropy alloy by liquid-metal-mediated mechanochemistry

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-02-06 DOI:10.1016/j.matt.2025.101986
Shining Wu, Yuting Zhang, Guanwu Li, Yifeng Hou, Mengyang Cao, Chengyu Wei, Pengkun Yang, Lu Huang, Yingpeng Wu
{"title":"Simple, fast, and energy saving: Room temperature synthesis of high-entropy alloy by liquid-metal-mediated mechanochemistry","authors":"Shining Wu, Yuting Zhang, Guanwu Li, Yifeng Hou, Mengyang Cao, Chengyu Wei, Pengkun Yang, Lu Huang, Yingpeng Wu","doi":"10.1016/j.matt.2025.101986","DOIUrl":null,"url":null,"abstract":"High-entropy alloys (HEAs) have a wide range of applications due to their excellent physical and chemical properties. However, traditional synthesis routes always require high temperatures over 923 K or have high equipment requirements. Here, we developed a liquid metal gallium (Ga)-mediated strategy using only a commercial vortex mixer and metal powders to synthesize HEAs near room temperature (303 K) with low power (7 W). A variety of HEAs were successfully prepared, and the yield can be expanded to over 10 g each time. The mechanistic investigation proved that Ga continued to flow under the mechanical force and exposed fresh surfaces to contact the metal, thereby promoting the process of metal dissolution in Ga and forming HEAs. These as-prepared HEAs can be used for catalysis in electrochemical oxygen evolution reactions with low overpotential and high durability. This strategy provides an innovative method for low-energy synthesis of HEAs at room temperature.","PeriodicalId":388,"journal":{"name":"Matter","volume":"12 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.101986","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-entropy alloys (HEAs) have a wide range of applications due to their excellent physical and chemical properties. However, traditional synthesis routes always require high temperatures over 923 K or have high equipment requirements. Here, we developed a liquid metal gallium (Ga)-mediated strategy using only a commercial vortex mixer and metal powders to synthesize HEAs near room temperature (303 K) with low power (7 W). A variety of HEAs were successfully prepared, and the yield can be expanded to over 10 g each time. The mechanistic investigation proved that Ga continued to flow under the mechanical force and exposed fresh surfaces to contact the metal, thereby promoting the process of metal dissolution in Ga and forming HEAs. These as-prepared HEAs can be used for catalysis in electrochemical oxygen evolution reactions with low overpotential and high durability. This strategy provides an innovative method for low-energy synthesis of HEAs at room temperature.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信