Estimating Soil-Water Characteristic Curve From the Particle Size Distribution With a Novel Granular Packing Model

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Chong Wang, Yumo Wu, Liang Xie, Zhijie Yang, Jiaqi Tian, Fan Yu, Junping Ren, Shuangyang Li
{"title":"Estimating Soil-Water Characteristic Curve From the Particle Size Distribution With a Novel Granular Packing Model","authors":"Chong Wang, Yumo Wu, Liang Xie, Zhijie Yang, Jiaqi Tian, Fan Yu, Junping Ren, Shuangyang Li","doi":"10.1029/2024wr037262","DOIUrl":null,"url":null,"abstract":"An indirect method is nowadays considered as an efficient way to obtain soil-water characteristic curve (SWCC) in engineering application. However, existing indirect models often oversimplify the soil pore and accumulation structure, which are not consistent with the natural soil. For this purpose, a novel granular packing state is obtained based on the relative compaction determined by porosity. A conceptual SWCC model (WANG24) is then established with particle size distribution (PSD) and the equivalent novel granular packing. 62 soils from 7 soil texture classes in the UNSODA database were used to validate WANG24. When comparing with the Mohammadi and Vanclooster (MV11), Arya and Heitman (AH15), and Arya and Paris (AP81) models, WANG24 shows its highest accuracy with lowest average root mean square error (RMSE) of 0.0243 (g·g<sup>−1</sup>). The capillary and adsorption on SWCC are also analyzed. The absolute errors between the soil water content predicted by equivalent novel granular packing and measured data are smaller than those of other packing states, mostly in the range of 0–0.015 (g·g<sup>−1</sup>). The soil packing states tend to be closer as the particle size decreases. In addition, the effect of initial void ratio to soil water content and matric head is explained. The model can reasonably describe the complexity of soil accumulation structure and improve prediction accuracy. It can provide a basis and reference for the subsequent hydraulic characterization of unsaturated soils.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"42 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr037262","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

An indirect method is nowadays considered as an efficient way to obtain soil-water characteristic curve (SWCC) in engineering application. However, existing indirect models often oversimplify the soil pore and accumulation structure, which are not consistent with the natural soil. For this purpose, a novel granular packing state is obtained based on the relative compaction determined by porosity. A conceptual SWCC model (WANG24) is then established with particle size distribution (PSD) and the equivalent novel granular packing. 62 soils from 7 soil texture classes in the UNSODA database were used to validate WANG24. When comparing with the Mohammadi and Vanclooster (MV11), Arya and Heitman (AH15), and Arya and Paris (AP81) models, WANG24 shows its highest accuracy with lowest average root mean square error (RMSE) of 0.0243 (g·g−1). The capillary and adsorption on SWCC are also analyzed. The absolute errors between the soil water content predicted by equivalent novel granular packing and measured data are smaller than those of other packing states, mostly in the range of 0–0.015 (g·g−1). The soil packing states tend to be closer as the particle size decreases. In addition, the effect of initial void ratio to soil water content and matric head is explained. The model can reasonably describe the complexity of soil accumulation structure and improve prediction accuracy. It can provide a basis and reference for the subsequent hydraulic characterization of unsaturated soils.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信