Lithium Carbide Prelithiation Agent‐Coated Separator Facilitates Compact Expansion of Silicon Electrode

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liewu Li, Xiaoyu Gong, Chufang Chen, Zhencheng Huang, Weibin Chen, Qianqian Jiang, Jing Chen, Jionghui Wang, Liqing He, Tengfei Cheng, Hongbin Wang, Shenghua Ye, Xuming Yang, Xiangzhong Ren, Xiaoping Ouyang, Jianhong Liu, Qianling Zhang, Jiangtao Hu
{"title":"Lithium Carbide Prelithiation Agent‐Coated Separator Facilitates Compact Expansion of Silicon Electrode","authors":"Liewu Li, Xiaoyu Gong, Chufang Chen, Zhencheng Huang, Weibin Chen, Qianqian Jiang, Jing Chen, Jionghui Wang, Liqing He, Tengfei Cheng, Hongbin Wang, Shenghua Ye, Xuming Yang, Xiangzhong Ren, Xiaoping Ouyang, Jianhong Liu, Qianling Zhang, Jiangtao Hu","doi":"10.1002/adfm.202424567","DOIUrl":null,"url":null,"abstract":"The high specific capacity and safety nature of silicon (Si) anode has garnered significant attention and investment for its application in high‐energy‐density lithium‐ion batteries (LIBs). However, the Si anode exhibits low initial Coulombic Efficiency (CE) and compromised cycle stability due to interfacial side reactions and the volume expansion of Si particles. Here, a straightforward strategy is proposed to prelithiate Si anodes and enhance the cycle stability by utilizing a lithium carbide (LiC<jats:sub>6</jats:sub>) coated separator. By incorporating a LiC<jats:sub>6</jats:sub> prelithiation agent‐coated PP/PE separator (PP/PE@LiC<jats:sub>6</jats:sub>), a robust interaction between PP/PE@LiC<jats:sub>6</jats:sub> and Si anode forms during cycling, which significantly reduces subsequent contact between the electrolyte and Si particles, thereby minimizing excessive electrolyte decomposition during cycling, and facilitates the compact expansion of the Si electrode. In Si|PP/PE@LiC<jats:sub>6</jats:sub>|Li cell, the initial CE reaches 108.51%, showcasing enhanced electrochemical stability (77.93% after 100 cycles). Moreover, the Si|PP/PE@LiC<jats:sub>6</jats:sub>|LiFePO<jats:sub>4</jats:sub> cell also exhibits exceptional initial CE of ≈93.02% and improved electrochemical stability (100.94% after 100 cycles at 0.33C). This study introduces a secure and readily attainable prelithiation method for industrial applications of high‐energy density Si‐based batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"69 1 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202424567","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The high specific capacity and safety nature of silicon (Si) anode has garnered significant attention and investment for its application in high‐energy‐density lithium‐ion batteries (LIBs). However, the Si anode exhibits low initial Coulombic Efficiency (CE) and compromised cycle stability due to interfacial side reactions and the volume expansion of Si particles. Here, a straightforward strategy is proposed to prelithiate Si anodes and enhance the cycle stability by utilizing a lithium carbide (LiC6) coated separator. By incorporating a LiC6 prelithiation agent‐coated PP/PE separator (PP/PE@LiC6), a robust interaction between PP/PE@LiC6 and Si anode forms during cycling, which significantly reduces subsequent contact between the electrolyte and Si particles, thereby minimizing excessive electrolyte decomposition during cycling, and facilitates the compact expansion of the Si electrode. In Si|PP/PE@LiC6|Li cell, the initial CE reaches 108.51%, showcasing enhanced electrochemical stability (77.93% after 100 cycles). Moreover, the Si|PP/PE@LiC6|LiFePO4 cell also exhibits exceptional initial CE of ≈93.02% and improved electrochemical stability (100.94% after 100 cycles at 0.33C). This study introduces a secure and readily attainable prelithiation method for industrial applications of high‐energy density Si‐based batteries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信