Unifying Electrochemically‐Driven Multistep Phase Transformations of Rutile TiO2 to Rocksalt Nanograins for Reversible Li+ and Na+ Storage

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zerui Yan, Dafu Tang, Sicheng Fan, Xia Zou, Xiaojuan Huang, Qinyao Jiang, Jiaxin Li, Ruohan Yu, Yingbin Lin, Zhigao Huang, Dong‐Liang Peng, Qiulong Wei
{"title":"Unifying Electrochemically‐Driven Multistep Phase Transformations of Rutile TiO2 to Rocksalt Nanograins for Reversible Li+ and Na+ Storage","authors":"Zerui Yan, Dafu Tang, Sicheng Fan, Xia Zou, Xiaojuan Huang, Qinyao Jiang, Jiaxin Li, Ruohan Yu, Yingbin Lin, Zhigao Huang, Dong‐Liang Peng, Qiulong Wei","doi":"10.1002/adma.202419999","DOIUrl":null,"url":null,"abstract":"Rutile titanium dioxide (TiO<jats:sub>2</jats:sub>(R)) lacks octahedral vacancies, which is not suitable for Li<jats:sup>+</jats:sup> and Na<jats:sup>+</jats:sup> intercalation via reversible two‐phase transformations, but it displays promising electrochemical properties. The origins of these electrochemical performances remain largely unclear. Herein, the Li<jats:sup>+</jats:sup> and Na<jats:sup>+</jats:sup> storage mechanisms of TiO<jats:sub>2</jats:sub>(R) with grain sizes ranging from 10 to 100 nm are systematically investigated. Through revealing the electrochemically‐driven atom rearrangements, nanosize effect and kinetics analysis of TiO<jats:sub>2</jats:sub>(R) nanograins during repeated cycling with Li<jats:sup>+</jats:sup> or Na<jats:sup>+</jats:sup>, a unified mechanism of electrochemically‐driven multistep rutile‐to‐rocksalt phase transformations is demonstrated. Importantly, the electrochemically in situ formed rocksalt phase has open diffusion channels for rapid Li<jats:sup>+</jats:sup> or Na<jats:sup>+</jats:sup> (de)intercalation through a solid‐solution mechanism, which determines the pseudocapacitive, “mirror‐like” cyclic voltammetry curves and excellent rate capabilities. Whereas, the nanosize effect determines the different Li<jats:sup>+</jats:sup> and Na<jats:sup>+</jats:sup> storage capacities because of their distinct reaction depths. Remarkably, the TiO<jats:sub>2</jats:sub>(R)‐10 nm anode in situ turns into rocksalt nanograins after 30 cycles with Na<jats:sup>+</jats:sup>, which delivers a reversible capacity of ≈200 mAh g<jats:sup>−1</jats:sup>, high‐rate capability of 97 mAh g<jats:sup>−1</jats:sup> at 10 A g<jats:sup>−1</jats:sup> and long‐term cycling stability over 3000 cycles. The findings provide deep insights into the in situ phase evolutions with boosted electrochemical Li<jats:sup>+</jats:sup> or Na<jats:sup>+</jats:sup> storage performance.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"42 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202419999","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rutile titanium dioxide (TiO2(R)) lacks octahedral vacancies, which is not suitable for Li+ and Na+ intercalation via reversible two‐phase transformations, but it displays promising electrochemical properties. The origins of these electrochemical performances remain largely unclear. Herein, the Li+ and Na+ storage mechanisms of TiO2(R) with grain sizes ranging from 10 to 100 nm are systematically investigated. Through revealing the electrochemically‐driven atom rearrangements, nanosize effect and kinetics analysis of TiO2(R) nanograins during repeated cycling with Li+ or Na+, a unified mechanism of electrochemically‐driven multistep rutile‐to‐rocksalt phase transformations is demonstrated. Importantly, the electrochemically in situ formed rocksalt phase has open diffusion channels for rapid Li+ or Na+ (de)intercalation through a solid‐solution mechanism, which determines the pseudocapacitive, “mirror‐like” cyclic voltammetry curves and excellent rate capabilities. Whereas, the nanosize effect determines the different Li+ and Na+ storage capacities because of their distinct reaction depths. Remarkably, the TiO2(R)‐10 nm anode in situ turns into rocksalt nanograins after 30 cycles with Na+, which delivers a reversible capacity of ≈200 mAh g−1, high‐rate capability of 97 mAh g−1 at 10 A g−1 and long‐term cycling stability over 3000 cycles. The findings provide deep insights into the in situ phase evolutions with boosted electrochemical Li+ or Na+ storage performance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信