Intraspecific scaling of home range size and its bioenergetic association

IF 4.4 2区 环境科学与生态学 Q1 ECOLOGY
Ecology Pub Date : 2025-02-06 DOI:10.1002/ecy.70003
Evan E. Byrnes, Jenna L. Hounslow, Vital Heim, Clemency E. White, Matthew J. Smukall, Stephen J. Beatty, Adrian C. Gleiss
{"title":"Intraspecific scaling of home range size and its bioenergetic association","authors":"Evan E. Byrnes,&nbsp;Jenna L. Hounslow,&nbsp;Vital Heim,&nbsp;Clemency E. White,&nbsp;Matthew J. Smukall,&nbsp;Stephen J. Beatty,&nbsp;Adrian C. Gleiss","doi":"10.1002/ecy.70003","DOIUrl":null,"url":null,"abstract":"<p>Home range size and metabolic rate of animals are theorized to scale in relation to body mass with similar exponents. This expectation has only been indirectly tested using lab-derived estimates of basal metabolic rate as proxies for field energy requirements. Therefore, it is unclear if existing theory aligns with observed patterns of home range scaling since field metabolic rates may scale differently than basal metabolic rates. We conducted the first direct field test of the relationship between home range and metabolic rate allometry. Using acoustic telemetry, we simultaneously measured the home range sizes and field metabolic rates of lemon sharks (<i>Negaprion brevirostris</i>) spanning one order of magnitude in body mass and compared the allometric scaling exponents of these traits. Similarity between allometric scaling exponents confirmed an expected strong association between metabolic rate and home range size. However, a nonsignificant but negative association between standard metabolic rate (SMR) and home range size suggests a complex relationship between metabolism and home range, contrasting previous assumptions of a positive relationship. Nevertheless, an overall positive association between home range size and total metabolic rate persisted, driven by a strong association between active energy expenditure and home range size. These findings underscore the intricate relationship between energetics and home range size, emphasizing the need for additional direct field investigations and the potential for modern tagging technologies to gather relevant data.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"106 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.70003","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Home range size and metabolic rate of animals are theorized to scale in relation to body mass with similar exponents. This expectation has only been indirectly tested using lab-derived estimates of basal metabolic rate as proxies for field energy requirements. Therefore, it is unclear if existing theory aligns with observed patterns of home range scaling since field metabolic rates may scale differently than basal metabolic rates. We conducted the first direct field test of the relationship between home range and metabolic rate allometry. Using acoustic telemetry, we simultaneously measured the home range sizes and field metabolic rates of lemon sharks (Negaprion brevirostris) spanning one order of magnitude in body mass and compared the allometric scaling exponents of these traits. Similarity between allometric scaling exponents confirmed an expected strong association between metabolic rate and home range size. However, a nonsignificant but negative association between standard metabolic rate (SMR) and home range size suggests a complex relationship between metabolism and home range, contrasting previous assumptions of a positive relationship. Nevertheless, an overall positive association between home range size and total metabolic rate persisted, driven by a strong association between active energy expenditure and home range size. These findings underscore the intricate relationship between energetics and home range size, emphasizing the need for additional direct field investigations and the potential for modern tagging technologies to gather relevant data.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecology
Ecology 环境科学-生态学
CiteScore
8.30
自引率
2.10%
发文量
332
审稿时长
3 months
期刊介绍: Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信