Lake chlorophyll responses to drought are related to lake type, connectivity, and ecological context across the conterminous United States

IF 3.8 1区 地球科学 Q1 LIMNOLOGY
Xinyu Sun, Kendra S. Cheruvelil, Patrick J. Hanly, Patricia A. Soranno
{"title":"Lake chlorophyll responses to drought are related to lake type, connectivity, and ecological context across the conterminous United States","authors":"Xinyu Sun, Kendra S. Cheruvelil, Patrick J. Hanly, Patricia A. Soranno","doi":"10.1002/lno.12817","DOIUrl":null,"url":null,"abstract":"Local and regional‐scaled studies point to the important role of lake type (natural lakes vs. reservoirs), surface water connectivity, and ecological context (multi‐scaled natural settings and human factors) in mediating lake responses to disturbances like drought. However, we lack an understanding at the macroscale that incorporates multiple scales (lake, watershed, region) and a variety of ecological contexts. Therefore, we used data from the LAGOS‐US research platform and applied a local water year timeframe to 62,927 US natural lakes and reservoirs across 17 ecoregions to examine how chlorophyll <jats:italic>a</jats:italic> responds to drought across various ecological contexts. We evaluated chlorophyll <jats:italic>a</jats:italic> changes relative to each lake's baseline and drought year. Drought led to lower and higher chlorophyll <jats:italic>a</jats:italic> in 18% and 20%, respectively, of lakes (both natural lakes and reservoirs included). Natural lakes had higher magnitudes of change and probabilities of increasing chlorophyll <jats:italic>a</jats:italic> during droughts than reservoirs, and these differences were particularly pronounced in isolated and highly‐connected lakes. Drought responses were also related to long‐term average lake chlorophyll <jats:italic>a</jats:italic> in complex ways, with a positive correlation in less productive lakes and a negative correlation in more productive lakes, and more pronounced drought responses in higher‐productivity lakes than lower‐productivity lakes. Thus, lake chlorophyll responses to drought are related to interactions between lake type and surface connectivity, long‐term average chlorophyll <jats:italic>a</jats:italic>, and many other multi‐scaled ecological factors (e.g., soil erodibility, minimum air temperature). These results reinforce the importance of integrating multi‐scaled ecological context to determine and predict the impacts of global changes on lakes.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"79 2 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.12817","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Local and regional‐scaled studies point to the important role of lake type (natural lakes vs. reservoirs), surface water connectivity, and ecological context (multi‐scaled natural settings and human factors) in mediating lake responses to disturbances like drought. However, we lack an understanding at the macroscale that incorporates multiple scales (lake, watershed, region) and a variety of ecological contexts. Therefore, we used data from the LAGOS‐US research platform and applied a local water year timeframe to 62,927 US natural lakes and reservoirs across 17 ecoregions to examine how chlorophyll a responds to drought across various ecological contexts. We evaluated chlorophyll a changes relative to each lake's baseline and drought year. Drought led to lower and higher chlorophyll a in 18% and 20%, respectively, of lakes (both natural lakes and reservoirs included). Natural lakes had higher magnitudes of change and probabilities of increasing chlorophyll a during droughts than reservoirs, and these differences were particularly pronounced in isolated and highly‐connected lakes. Drought responses were also related to long‐term average lake chlorophyll a in complex ways, with a positive correlation in less productive lakes and a negative correlation in more productive lakes, and more pronounced drought responses in higher‐productivity lakes than lower‐productivity lakes. Thus, lake chlorophyll responses to drought are related to interactions between lake type and surface connectivity, long‐term average chlorophyll a, and many other multi‐scaled ecological factors (e.g., soil erodibility, minimum air temperature). These results reinforce the importance of integrating multi‐scaled ecological context to determine and predict the impacts of global changes on lakes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Limnology and Oceanography
Limnology and Oceanography 地学-海洋学
CiteScore
8.80
自引率
6.70%
发文量
254
审稿时长
3 months
期刊介绍: Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信