Copper isolated sites on MXene for efficiency aniline synthesis utilizing H2S as a hydrogen source

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Dong Li, Jingqi Qu, Ganchang Lei, Shiping Wang, Shijing Liang, Xiaohai Zheng, Lijuan Shen, Yingying Zhan, Lilong Jiang
{"title":"Copper isolated sites on MXene for efficiency aniline synthesis utilizing H2S as a hydrogen source","authors":"Dong Li, Jingqi Qu, Ganchang Lei, Shiping Wang, Shijing Liang, Xiaohai Zheng, Lijuan Shen, Yingying Zhan, Lilong Jiang","doi":"10.1016/j.ces.2025.121327","DOIUrl":null,"url":null,"abstract":"Hydrogen sulfide (H<sub>2</sub>S), a secondary energy carrier with remarkable energy density, has emerged as an innovative hydrogen donor for the hydrogenation of nitroarenes. Nevertheless, the lack of efficient catalysts has impeded the development of this novel resource utilization method. Here, we proposed a facile and eco-friendly approach for the synthesis of isolated Cu sites on MXene catalysts by a combination of Lewis acid salt melt etching and oxidative dispersion. The as-designed MXene catalysts demonstrate high activity and product selectivity towards different nitroarenes at 70 °C within a 2 h reaction. The <em>in-situ</em> characterizations and DFT calculations reveal that the active Cu sites significantly lower the energy barriers for the nitro dissociation and hydrogenation of intermediates, facilitating amino formation. The mechanism involves an acceleration of the hydrogen transfer process over C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub>*, leading to hydroxylation of the nitro group followed by deprotonation, ultimately resulting in the formation of an amino group.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"50 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2025.121327","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen sulfide (H2S), a secondary energy carrier with remarkable energy density, has emerged as an innovative hydrogen donor for the hydrogenation of nitroarenes. Nevertheless, the lack of efficient catalysts has impeded the development of this novel resource utilization method. Here, we proposed a facile and eco-friendly approach for the synthesis of isolated Cu sites on MXene catalysts by a combination of Lewis acid salt melt etching and oxidative dispersion. The as-designed MXene catalysts demonstrate high activity and product selectivity towards different nitroarenes at 70 °C within a 2 h reaction. The in-situ characterizations and DFT calculations reveal that the active Cu sites significantly lower the energy barriers for the nitro dissociation and hydrogenation of intermediates, facilitating amino formation. The mechanism involves an acceleration of the hydrogen transfer process over C6H5NO2*, leading to hydroxylation of the nitro group followed by deprotonation, ultimately resulting in the formation of an amino group.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信