Binyan Sun, Cyrill U. Zosso, Guido L. B. Wiesenberg, Elaine Pegoraro, Margaret S. Torn, Michael W. I. Schmidt
{"title":"Warming accelerates the decomposition of root biomass in a temperate forest only in topsoil but not in subsoil","authors":"Binyan Sun, Cyrill U. Zosso, Guido L. B. Wiesenberg, Elaine Pegoraro, Margaret S. Torn, Michael W. I. Schmidt","doi":"10.5194/egusphere-2025-299","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Global warming could potentially increase the decomposition rate of soil organic matter (SOM), not only in the topsoil (< 20 cm) but also in the subsoil (> 20 cm). Despite its low carbon content, subsoil holds on average nearly as much SOM as topsoil across various ecosystems. However, significant uncertainties remain regarding the impact of warming on SOM decomposition in subsoil, particularly root-derived carbon, which serves as the primary organic input at these horizons. In the Blodgett Forest warming experiment (California, USA), we investigated whether warming accelerates the decomposition of root-litter at three depths (10–14, 45–49, and 85–89 cm) by using molecular markers and <em>in-situ</em> incubation of <sup>13</sup>C-labelled root-litter at each depth. Our results reveal that the decomposition of added root-litter was only accelerated in the topsoil (10–14 cm) but not in the subsoil (45–49 and 85–89 cm) with warming. In subsoil, although the decomposition rate of root-litter derived carbon did not differ significantly between ambient and warmed plots, the underlying reasons for this similarity are distinct. With molecular marker analysis, we found higher microbial activity, indicated by higher concentration of certain fatty acid monomers that could be originally microbial-derived such as octadecanoic acid (C<sub>18:0 </sub>fatty acids), octadecenoic acid (C<sub>18:1</sub> fatty acids), and hexadecanoic acid (C<sub>16:0</sub> fatty acids) than those originally derived from roots in ambient subsoil. With warming, the higher concentration of long-chain (C number > 20) 𝜔-hydroxy acids and diacids left after 3 years of root incubation suggested a lower turnover rate and this could be due to lower microbial abundance and lower soil moisture induced by warming. Our study demonstrates that the impact of warming on the decomposition of root-litter in a temperate forest is depth-dependent. The slower turnover rate of long-chain 𝜔-hydroxy acids and diacids shows that they are more persistent compared to bulk root mass and could be preserved in subsoil for longer time as long as the environmental conditions are unfavorable for decomposition with warming.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"136 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2025-299","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Global warming could potentially increase the decomposition rate of soil organic matter (SOM), not only in the topsoil (< 20 cm) but also in the subsoil (> 20 cm). Despite its low carbon content, subsoil holds on average nearly as much SOM as topsoil across various ecosystems. However, significant uncertainties remain regarding the impact of warming on SOM decomposition in subsoil, particularly root-derived carbon, which serves as the primary organic input at these horizons. In the Blodgett Forest warming experiment (California, USA), we investigated whether warming accelerates the decomposition of root-litter at three depths (10–14, 45–49, and 85–89 cm) by using molecular markers and in-situ incubation of 13C-labelled root-litter at each depth. Our results reveal that the decomposition of added root-litter was only accelerated in the topsoil (10–14 cm) but not in the subsoil (45–49 and 85–89 cm) with warming. In subsoil, although the decomposition rate of root-litter derived carbon did not differ significantly between ambient and warmed plots, the underlying reasons for this similarity are distinct. With molecular marker analysis, we found higher microbial activity, indicated by higher concentration of certain fatty acid monomers that could be originally microbial-derived such as octadecanoic acid (C18:0 fatty acids), octadecenoic acid (C18:1 fatty acids), and hexadecanoic acid (C16:0 fatty acids) than those originally derived from roots in ambient subsoil. With warming, the higher concentration of long-chain (C number > 20) 𝜔-hydroxy acids and diacids left after 3 years of root incubation suggested a lower turnover rate and this could be due to lower microbial abundance and lower soil moisture induced by warming. Our study demonstrates that the impact of warming on the decomposition of root-litter in a temperate forest is depth-dependent. The slower turnover rate of long-chain 𝜔-hydroxy acids and diacids shows that they are more persistent compared to bulk root mass and could be preserved in subsoil for longer time as long as the environmental conditions are unfavorable for decomposition with warming.
SoilAgricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍:
SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences.
SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).