Jie Zhou, Sebastian Loeppmann, Haishui Yang, Matthias Gube, Lingling Shi, Johanna Pausch, Michaela A. Dippold
{"title":"Linking microbial community dynamics to rhizosphere carbon flow depend on arbuscular mycorrhizae and nitrogen fertilization","authors":"Jie Zhou, Sebastian Loeppmann, Haishui Yang, Matthias Gube, Lingling Shi, Johanna Pausch, Michaela A. Dippold","doi":"10.1007/s00374-025-01897-2","DOIUrl":null,"url":null,"abstract":"<p>Little is known about the path of root-derived carbon (C) into soil microbial communities in response to arbuscular mycorrhizal fungi (AMF) and nitrogen (N) fertilization. A mycorrhiza defective mutant of tomato (reduced mycorrhizal colonization: <i>rmc</i>) and its mycorrhizal wild type progenitor (MYC) were used to control for the formation of AMF. 16-week continuous <sup>13</sup>CO<sub>2</sub> labeling was performed to quantify the photosynthetic C allocation in active microorganisms via <sup>13</sup>C profiles of neutral (NLFAs) and phospholipid fatty acids (PLFAs). The <sup>13</sup>C incorporation into fungal biomarker (the sum of PLFA 16:1ω5c, NLFA 16:1ω5c, PLFA 18:2ω6,9) increased with time over 16 weeks, and 4.62% of totally assimilated C was incorporated into AMF. More <sup>13</sup>C was allocated into AMF storage compounds (NLFA 16:1ω5c, 3.1–4.1%) than hyphal biomass (PLFA 16:1ω5c, 0.12–0.25%). Furthermore, AMF symbiosis shifted microbial community composition, resulting in a lower <sup>13</sup>C incorporation into bacteria and saprotrophic fungi compared to <i>rmc</i> plants. This suggests a lower use of root-derived C by bacteria and saprotrophic fungi but preference to older C compounds as energy sources. However, N fertilization decreased AMF abundance and subsequently less root-derived C was incorporated into PLFA and NLFA 16:1ω5c in relative to unfertilized soils, due to less C allocation caused by an increased C immobilization in the aboveground biomass. Our findings suggested that root-derived C can be sequestered by AMF through storage in their reproductive organs, but the preferential C allocation to AMF might be at the expense of C flow to other microbial groups. Overall, our results confirmed that mycorrhizal plants exert a greater influence on C incorporation into bacteria and saprotrophic fungi, which, however, is highly dependent on N fertilization.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"11 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-025-01897-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Little is known about the path of root-derived carbon (C) into soil microbial communities in response to arbuscular mycorrhizal fungi (AMF) and nitrogen (N) fertilization. A mycorrhiza defective mutant of tomato (reduced mycorrhizal colonization: rmc) and its mycorrhizal wild type progenitor (MYC) were used to control for the formation of AMF. 16-week continuous 13CO2 labeling was performed to quantify the photosynthetic C allocation in active microorganisms via 13C profiles of neutral (NLFAs) and phospholipid fatty acids (PLFAs). The 13C incorporation into fungal biomarker (the sum of PLFA 16:1ω5c, NLFA 16:1ω5c, PLFA 18:2ω6,9) increased with time over 16 weeks, and 4.62% of totally assimilated C was incorporated into AMF. More 13C was allocated into AMF storage compounds (NLFA 16:1ω5c, 3.1–4.1%) than hyphal biomass (PLFA 16:1ω5c, 0.12–0.25%). Furthermore, AMF symbiosis shifted microbial community composition, resulting in a lower 13C incorporation into bacteria and saprotrophic fungi compared to rmc plants. This suggests a lower use of root-derived C by bacteria and saprotrophic fungi but preference to older C compounds as energy sources. However, N fertilization decreased AMF abundance and subsequently less root-derived C was incorporated into PLFA and NLFA 16:1ω5c in relative to unfertilized soils, due to less C allocation caused by an increased C immobilization in the aboveground biomass. Our findings suggested that root-derived C can be sequestered by AMF through storage in their reproductive organs, but the preferential C allocation to AMF might be at the expense of C flow to other microbial groups. Overall, our results confirmed that mycorrhizal plants exert a greater influence on C incorporation into bacteria and saprotrophic fungi, which, however, is highly dependent on N fertilization.
期刊介绍:
Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.