Self-Supervised Image Segmentation Using Meta-Learning and Multi-Backbone Feature Fusion.

International journal of neural systems Pub Date : 2025-05-01 Epub Date: 2025-02-03 DOI:10.1142/S0129065725500121
Muhammad Shahroz Ajmal, Guohua Geng, Xiaofeng Wang, Mohsin Ashraf
{"title":"Self-Supervised Image Segmentation Using Meta-Learning and Multi-Backbone Feature Fusion.","authors":"Muhammad Shahroz Ajmal, Guohua Geng, Xiaofeng Wang, Mohsin Ashraf","doi":"10.1142/S0129065725500121","DOIUrl":null,"url":null,"abstract":"<p><p>Few-shot segmentation (FSS) aims to reduce the need for manual annotation, which is both expensive and time-consuming. While FSS enhances model generalization to new concepts with only limited test samples, it still relies on a substantial amount of labeled training data for base classes. To address these issues, we propose a multi-backbone few shot segmentation (MBFSS) method. This self-supervised FSS technique utilizes unsupervised saliency for pseudo-labeling, allowing the model to be trained on unlabeled data. In addition, it integrates features from multiple backbones (ResNet, ResNeXt, and PVT v2) to generate a richer feature representation than a single backbone. Through extensive experimentation on PASCAL-5i and COCO-20i, our method achieves 54.3% and 25.1% on one-shot segmentation, exceeding the baseline methods by 13.5% and 4%, respectively. These improvements significantly enhance the model's performance in real-world applications with negligible labeling effort.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550012"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Few-shot segmentation (FSS) aims to reduce the need for manual annotation, which is both expensive and time-consuming. While FSS enhances model generalization to new concepts with only limited test samples, it still relies on a substantial amount of labeled training data for base classes. To address these issues, we propose a multi-backbone few shot segmentation (MBFSS) method. This self-supervised FSS technique utilizes unsupervised saliency for pseudo-labeling, allowing the model to be trained on unlabeled data. In addition, it integrates features from multiple backbones (ResNet, ResNeXt, and PVT v2) to generate a richer feature representation than a single backbone. Through extensive experimentation on PASCAL-5i and COCO-20i, our method achieves 54.3% and 25.1% on one-shot segmentation, exceeding the baseline methods by 13.5% and 4%, respectively. These improvements significantly enhance the model's performance in real-world applications with negligible labeling effort.

基于元学习和多主干特征融合的自监督图像分割。
少镜头分割(FSS)旨在减少手工标注的需求,手工标注既昂贵又耗时。虽然FSS仅用有限的测试样本增强了对新概念的模型泛化,但它仍然依赖于基类的大量标记训练数据。为了解决这些问题,我们提出了一种多骨干少镜头分割(MBFSS)方法。这种自监督FSS技术利用无监督显著性进行伪标记,允许模型在未标记的数据上进行训练。此外,它还集成了多个骨干网(ResNet、ResNeXt和PVT v2)的特性,以生成比单个骨干网更丰富的特征表示。通过在PASCAL-5i和COCO-20i上的大量实验,我们的方法在一次分割上达到了54.3%和25.1%,分别比基线方法高出13.5%和4%。这些改进显著提高了模型在实际应用中的性能,而标记工作可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信