Digital Cytometry: Extraction of Forward and Side Scattering Signals From Holotomography.

Jaepil Jo, Herve Hugonnet, Mahn Jae Lee, YongKeun Park
{"title":"Digital Cytometry: Extraction of Forward and Side Scattering Signals From Holotomography.","authors":"Jaepil Jo, Herve Hugonnet, Mahn Jae Lee, YongKeun Park","doi":"10.1002/jbio.202400387","DOIUrl":null,"url":null,"abstract":"<p><p>Flow cytometry is a cornerstone technique in medical and biological research, providing crucial information about cell size and granularity through forward scatter (FSC) and side scatter (SSC) signals. Despite its widespread use, the precise relationship between these scatter signals and corresponding microscopic images remains underexplored. Here, we investigate this intrinsic relationship by utilizing scattering theory and holotomography, a three-dimensional quantitative phase imaging (QPI) technique. We demonstrate the extraction of FSC and SSC signals from individual, unlabeled cells by analyzing their three-dimensional refractive index distributions obtained through holotomography. Additionally, we introduce a method for digital windowing of SSC signals to facilitate effective segmentation and morphology-based cell type classification. Our approach bridges the gap between flow cytometry and microscopic imaging, offering a new perspective on analyzing cellular characteristics with high accuracy and without the need for labeling.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400387"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Flow cytometry is a cornerstone technique in medical and biological research, providing crucial information about cell size and granularity through forward scatter (FSC) and side scatter (SSC) signals. Despite its widespread use, the precise relationship between these scatter signals and corresponding microscopic images remains underexplored. Here, we investigate this intrinsic relationship by utilizing scattering theory and holotomography, a three-dimensional quantitative phase imaging (QPI) technique. We demonstrate the extraction of FSC and SSC signals from individual, unlabeled cells by analyzing their three-dimensional refractive index distributions obtained through holotomography. Additionally, we introduce a method for digital windowing of SSC signals to facilitate effective segmentation and morphology-based cell type classification. Our approach bridges the gap between flow cytometry and microscopic imaging, offering a new perspective on analyzing cellular characteristics with high accuracy and without the need for labeling.

数字细胞测量:从 Holotomography 提取正向和侧向散射信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信