A novel approach for adaptively separating and extracting compound fault features of the in-wheel motor bearing.

Yukun Tao, Chun Ge, Han Feng, Hongtao Xue, Mingyu Yao, Haihong Tang, Zhiqiang Liao, Peng Chen
{"title":"A novel approach for adaptively separating and extracting compound fault features of the in-wheel motor bearing.","authors":"Yukun Tao, Chun Ge, Han Feng, Hongtao Xue, Mingyu Yao, Haihong Tang, Zhiqiang Liao, Peng Chen","doi":"10.1016/j.isatra.2025.01.042","DOIUrl":null,"url":null,"abstract":"<p><p>For compound fault detection of in-wheel motor bearings, this paper proposes a novel approach to adaptively separate multi-source signals and extract compound fault features. Building upon blind source separation (BSS), this approach integrates blind deconvolution to address the challenge of extracting weak features. To resolve the undetermined condition of BSS and enhance feature expression, an adaptive signal reconstruction strategy based on local mean decomposition is proposed. Non-negative matrix factorization, a commonly used BSS method, is refined to suit practical applications by adopting the Itakura-Saito distance and the sparse constraint. Then, fault source signals are adaptively identified based on the proposed envelope spectrum peak factor. By introducing a new waveform extension strategy to effectively reduce the endpoint effect, multipoint optimal minimum entropy deconvolution adjusted is improved and used to enhance and extract weak features. Simulation and experimental results validate the effectiveness and robustness of the proposed approach across various stable working conditions and different types of compound faults.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.01.042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For compound fault detection of in-wheel motor bearings, this paper proposes a novel approach to adaptively separate multi-source signals and extract compound fault features. Building upon blind source separation (BSS), this approach integrates blind deconvolution to address the challenge of extracting weak features. To resolve the undetermined condition of BSS and enhance feature expression, an adaptive signal reconstruction strategy based on local mean decomposition is proposed. Non-negative matrix factorization, a commonly used BSS method, is refined to suit practical applications by adopting the Itakura-Saito distance and the sparse constraint. Then, fault source signals are adaptively identified based on the proposed envelope spectrum peak factor. By introducing a new waveform extension strategy to effectively reduce the endpoint effect, multipoint optimal minimum entropy deconvolution adjusted is improved and used to enhance and extract weak features. Simulation and experimental results validate the effectiveness and robustness of the proposed approach across various stable working conditions and different types of compound faults.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信