[Artificial intelligence in radiology : Literature overview and reading recommendations].

Radiologie (Heidelberg, Germany) Pub Date : 2025-04-01 Epub Date: 2025-02-04 DOI:10.1007/s00117-025-01419-z
Moritz C Halfmann, Peter Mildenberger, Tobias Jorg
{"title":"[Artificial intelligence in radiology : Literature overview and reading recommendations].","authors":"Moritz C Halfmann, Peter Mildenberger, Tobias Jorg","doi":"10.1007/s00117-025-01419-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Due to the ongoing rapid advancement of artificial intelligence (AI), including large language models (LLMs), radiologists will soon face the challenge of the responsible clinical integration of these models.</p><p><strong>Objectives: </strong>The aim of this work is to provide an overview of current developments regarding LLMs, potential applications in radiology, and their (future) relevance and limitations.</p><p><strong>Materials and methods: </strong>This review analyzes publications on LLMs for specific applications in medicine and radiology. Additionally, literature related to the challenges of clinical LLM use was reviewed and summarized.</p><p><strong>Results: </strong>In addition to a general overview of current literature on radiological applications of LLMs, several particularly noteworthy studies on the subject are recommended.</p><p><strong>Conclusions: </strong>In order to facilitate the forthcoming clinical integration of LLMs, radiologists need to engage with the topic, understand various application areas, and be aware of potential limitations in order to address challenges related to patient safety, ethics, and data protection.</p>","PeriodicalId":74635,"journal":{"name":"Radiologie (Heidelberg, Germany)","volume":" ","pages":"266-270"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologie (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00117-025-01419-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Due to the ongoing rapid advancement of artificial intelligence (AI), including large language models (LLMs), radiologists will soon face the challenge of the responsible clinical integration of these models.

Objectives: The aim of this work is to provide an overview of current developments regarding LLMs, potential applications in radiology, and their (future) relevance and limitations.

Materials and methods: This review analyzes publications on LLMs for specific applications in medicine and radiology. Additionally, literature related to the challenges of clinical LLM use was reviewed and summarized.

Results: In addition to a general overview of current literature on radiological applications of LLMs, several particularly noteworthy studies on the subject are recommended.

Conclusions: In order to facilitate the forthcoming clinical integration of LLMs, radiologists need to engage with the topic, understand various application areas, and be aware of potential limitations in order to address challenges related to patient safety, ethics, and data protection.

[放射学中的人工智能:文献综述和阅读建议]。
背景:由于人工智能(AI)的持续快速发展,包括大型语言模型(llm),放射科医生将很快面临负责任的临床整合这些模型的挑战。目的:本工作的目的是概述当前llm的发展,放射学的潜在应用,以及它们(未来)的相关性和局限性。材料和方法:本综述分析了llm在医学和放射学中的具体应用。此外,回顾和总结了与临床法学硕士使用挑战相关的文献。结果:除了对llm放射学应用的当前文献进行总体概述外,还推荐了几项特别值得注意的研究。结论:为了促进即将到来的法学硕士临床整合,放射科医生需要参与该主题,了解各种应用领域,并意识到潜在的局限性,以应对与患者安全、伦理和数据保护相关的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信