FLANet: A multiscale temporal convolution and spatial-spectral attention network for EEG artifact removal with adversarial training.

Junkongshuai Wang, Yangjie Luo, Haoran Wang, Lu Wang, Lihua Zhang, Zhongxue Gan, Xiaoyang Kang
{"title":"FLANet: A multiscale temporal convolution and spatial-spectral attention network for EEG artifact removal with adversarial training.","authors":"Junkongshuai Wang, Yangjie Luo, Haoran Wang, Lu Wang, Lihua Zhang, Zhongxue Gan, Xiaoyang Kang","doi":"10.1088/1741-2552/adae34","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Denoising artifacts, such as noise from muscle or cardiac activity, is a crucial and ubiquitous concern in neurophysiological signal processing, particularly for enhancing the signal-to-noise ratio in electroencephalograph (EEG) analysis. Novel methods based on deep learning demonstrate a notably prominent effect compared to traditional denoising approaches. However, those still suffer from certain limitations. Some methods often neglect the multi-domain characteristics of the artifact signal. Even among those that do consider these, there are deficiencies in terms of efficiency, effectiveness and computation cost.<i>Approach.</i>In this study, we propose a multiscale temporal convolution and spatial-spectral attention network with adversarial training for automatically filtering artifacts, named filter artifacts network (FLANet). The multiscale convolution module can extract sufficient temporal information and the spatial-spectral attention network can extract not only non-local similarity but also spectral dependencies. To make data denoising more efficient and accurate, we adopt adversarial training with novel loss functions to generate outputs that are closer to pure signals.<i>Main results.</i>The results show that the method proposed in this paper achieves great performance in artifact removal and valid information preservation on EEG signals contaminated by different types of artifacts. This approach enables a more optimal trade-off between denoising efficacy and computational overhead.<i>Significance.</i>The proposed artifact removal framework facilitates the implementation of an efficient denoising method, contributing to the advancement of neural analysis and neural engineering, and can be expected to be applied to clinical research and to realize novel human-computer interaction systems.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adae34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Denoising artifacts, such as noise from muscle or cardiac activity, is a crucial and ubiquitous concern in neurophysiological signal processing, particularly for enhancing the signal-to-noise ratio in electroencephalograph (EEG) analysis. Novel methods based on deep learning demonstrate a notably prominent effect compared to traditional denoising approaches. However, those still suffer from certain limitations. Some methods often neglect the multi-domain characteristics of the artifact signal. Even among those that do consider these, there are deficiencies in terms of efficiency, effectiveness and computation cost.Approach.In this study, we propose a multiscale temporal convolution and spatial-spectral attention network with adversarial training for automatically filtering artifacts, named filter artifacts network (FLANet). The multiscale convolution module can extract sufficient temporal information and the spatial-spectral attention network can extract not only non-local similarity but also spectral dependencies. To make data denoising more efficient and accurate, we adopt adversarial training with novel loss functions to generate outputs that are closer to pure signals.Main results.The results show that the method proposed in this paper achieves great performance in artifact removal and valid information preservation on EEG signals contaminated by different types of artifacts. This approach enables a more optimal trade-off between denoising efficacy and computational overhead.Significance.The proposed artifact removal framework facilitates the implementation of an efficient denoising method, contributing to the advancement of neural analysis and neural engineering, and can be expected to be applied to clinical research and to realize novel human-computer interaction systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信