Assessment of the potential toxic of naringenin nanoparticles using ex vivo and in silico models.

Q2 Agricultural and Biological Sciences
Brazilian Journal of Biology Pub Date : 2025-01-31 eCollection Date: 2025-01-01 DOI:10.1590/1519-6984.290560
G B Costa, B F Rossi, B P M Oliveira, D E Santo, F V Leimann, A L Romero, A P Peron, O H Gonçalves
{"title":"Assessment of the potential toxic of naringenin nanoparticles using ex vivo and in silico models.","authors":"G B Costa, B F Rossi, B P M Oliveira, D E Santo, F V Leimann, A L Romero, A P Peron, O H Gonçalves","doi":"10.1590/1519-6984.290560","DOIUrl":null,"url":null,"abstract":"<p><p>Naringenin is a flavonoid known for its anti-inflammatory, antineoplastic, antiatherogenic, and antioxidant properties. However, it has poor technological characteristics and limited bioavailability, which hinder its use in food applications. Nanoencapsulation could address these limitations, but safety concerns regarding nanoengineered bioactives need to be resolved before they can be effectively utilized as food additives. The objective of this study was to evaluate the potential cytotoxic, genotoxic, and mutagenic effects of both free and encapsulated naringenin through in vivo experiments using Allium cepa L. roots, along with pharmacokinetic and molecular docking analyses. The results showed that naringenin nanoparticles did not produce significant changes in the cell division index of meristematic cells in A. cepa roots. Additionally, no significant alterations in the mitotic spindle or chromosomal breaks were observed. Molecular docking studies indicated that naringenin effectively binds to the active site of the catalase enzyme (CAT) in a competitive manner, while it attaches to a site away from the active site of superoxide dismutase (SOD2), demonstrating a non-competitive interaction. ADMET property assessments suggested that naringenin exhibits relatively low toxicity and has favorable molecular characteristics for oral administration. In summary, this study supports the potential of naringenin, particularly in its nanoencapsulated form, as a safe and effective ingredient for functional foods, provided that safety concerns regarding nanoencapsulation are adequately addressed.</p>","PeriodicalId":55326,"journal":{"name":"Brazilian Journal of Biology","volume":"84 ","pages":"e290560"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1519-6984.290560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Naringenin is a flavonoid known for its anti-inflammatory, antineoplastic, antiatherogenic, and antioxidant properties. However, it has poor technological characteristics and limited bioavailability, which hinder its use in food applications. Nanoencapsulation could address these limitations, but safety concerns regarding nanoengineered bioactives need to be resolved before they can be effectively utilized as food additives. The objective of this study was to evaluate the potential cytotoxic, genotoxic, and mutagenic effects of both free and encapsulated naringenin through in vivo experiments using Allium cepa L. roots, along with pharmacokinetic and molecular docking analyses. The results showed that naringenin nanoparticles did not produce significant changes in the cell division index of meristematic cells in A. cepa roots. Additionally, no significant alterations in the mitotic spindle or chromosomal breaks were observed. Molecular docking studies indicated that naringenin effectively binds to the active site of the catalase enzyme (CAT) in a competitive manner, while it attaches to a site away from the active site of superoxide dismutase (SOD2), demonstrating a non-competitive interaction. ADMET property assessments suggested that naringenin exhibits relatively low toxicity and has favorable molecular characteristics for oral administration. In summary, this study supports the potential of naringenin, particularly in its nanoencapsulated form, as a safe and effective ingredient for functional foods, provided that safety concerns regarding nanoencapsulation are adequately addressed.

利用体内外模型评估柚皮苷纳米颗粒的潜在毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
301
审稿时长
4-8 weeks
期刊介绍: The BJB – Brazilian Journal of Biology® is a scientific journal devoted to publishing original articles in all fields of the Biological Sciences, i.e., General Biology, Cell Biology, Evolution, Biological Oceanography, Taxonomy, Geographic Distribution, Limnology, Aquatic Biology, Botany, Zoology, Genetics, and Ecology. Priority is given to papers presenting results of researches in the Neotropical region. Material published includes research papers, review papers (upon approval of the Editorial Board), notes, book reviews, and comments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信