Alicia Mattiazzi, Carolina Jaquenod De Giusti, Carlos A Valverde
{"title":"CaMKII at the crossroads: calcium dysregulation, and post-translational modifications driving cell death.","authors":"Alicia Mattiazzi, Carolina Jaquenod De Giusti, Carlos A Valverde","doi":"10.1113/JP285941","DOIUrl":null,"url":null,"abstract":"<p><p>The multifunctional Ca<sup>2+</sup>/calmodulin-dependent protein kinase II (CaMKII) regulates numerous proteins involved in excitation-contraction-relaxation coupling and cardiac excitability. However, its overactivation induces severe Ca<sup>2+</sup>/handling alterations, playing a significant role in the pathogenesis of diseases such as hypertrophy, arrhythmias and cell death, which can ultimately lead to heart failure. Being a suitable target for various aberrant signals that characterize several diseases, such as Ca<sup>2+</sup> overload, oxidative stress or excessive glycosylation, CaMKII shifts under these conditions from a physiological regulator to a pathological molecule. In this review, we explore the evolution of knowledge regarding the role of CaMKII activation on cell death across different pathological contexts, focusing on the converging mechanisms that transform the enzyme from an ally into a villain.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP285941","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates numerous proteins involved in excitation-contraction-relaxation coupling and cardiac excitability. However, its overactivation induces severe Ca2+/handling alterations, playing a significant role in the pathogenesis of diseases such as hypertrophy, arrhythmias and cell death, which can ultimately lead to heart failure. Being a suitable target for various aberrant signals that characterize several diseases, such as Ca2+ overload, oxidative stress or excessive glycosylation, CaMKII shifts under these conditions from a physiological regulator to a pathological molecule. In this review, we explore the evolution of knowledge regarding the role of CaMKII activation on cell death across different pathological contexts, focusing on the converging mechanisms that transform the enzyme from an ally into a villain.
期刊介绍:
The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew.
The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.