Bio-orthogonal crosslinking and hyaluronan facilitate transparent healing after treatment of deep corneal injuries with in situ-forming hydrogels.

IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING
Fang Chen, Uiyoung Han, Thitima Wungcharoen, Youngyoon Amy Seo, Peter Le, Li Jiang, Nae-Won Kang, Euisun Song, Kyeongwoo Jang, David Mundy, Gabriella Maria Fernandes-Cunha, Sarah Heilshorn, David Myung
{"title":"Bio-orthogonal crosslinking and hyaluronan facilitate transparent healing after treatment of deep corneal injuries with in situ-forming hydrogels.","authors":"Fang Chen, Uiyoung Han, Thitima Wungcharoen, Youngyoon Amy Seo, Peter Le, Li Jiang, Nae-Won Kang, Euisun Song, Kyeongwoo Jang, David Mundy, Gabriella Maria Fernandes-Cunha, Sarah Heilshorn, David Myung","doi":"10.1038/s41536-024-00385-9","DOIUrl":null,"url":null,"abstract":"<p><p>Corneal transplantation is the primary treatment for corneal blindness, affecting millions globally. However, challenges like donor scarcity and surgical complications remain. Recently, in situ-forming corneal stroma substitutes have emerged, offering potential solutions to these limitations. These substitutes enable liquid-to-hydrogel formation in situ, eliminating sutures and reducing complications. Here we performed a direct, side-by-side comparison of a composite hyaluronan-collagen (HA-Col) hydrogel crosslinked by either photochemistry or bio-orthogonal chemistry to ascertain the impact of reaction specificity on corneal wound healing. Testing in rodent and rabbit models suggests that composite HA-Col gels crosslinked by bio-orthogonal chemistry results in more rapid and optically favorable wound healing compared to the same composition crosslinked by photochemistry as well as bio-orthogonally crosslinked collagen alone. These findings underscore biochemical parameters that may be important to the success of crosslinked, in situ-forming hydrogels as an alternative to corneal transplantation, with the potential for expanded access to treatment and improved outcomes.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"10 1","pages":"8"},"PeriodicalIF":6.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-024-00385-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Corneal transplantation is the primary treatment for corneal blindness, affecting millions globally. However, challenges like donor scarcity and surgical complications remain. Recently, in situ-forming corneal stroma substitutes have emerged, offering potential solutions to these limitations. These substitutes enable liquid-to-hydrogel formation in situ, eliminating sutures and reducing complications. Here we performed a direct, side-by-side comparison of a composite hyaluronan-collagen (HA-Col) hydrogel crosslinked by either photochemistry or bio-orthogonal chemistry to ascertain the impact of reaction specificity on corneal wound healing. Testing in rodent and rabbit models suggests that composite HA-Col gels crosslinked by bio-orthogonal chemistry results in more rapid and optically favorable wound healing compared to the same composition crosslinked by photochemistry as well as bio-orthogonally crosslinked collagen alone. These findings underscore biochemical parameters that may be important to the success of crosslinked, in situ-forming hydrogels as an alternative to corneal transplantation, with the potential for expanded access to treatment and improved outcomes.

生物正交交联和透明质酸促进透明愈合后治疗深层角膜损伤的位置形成的水凝胶。
角膜移植是角膜失明的主要治疗方法,影响着全球数百万人。然而,诸如供体短缺和手术并发症等挑战仍然存在。最近,原位形成的角膜基质替代物已经出现,为这些限制提供了潜在的解决方案。这些替代品能够原位形成液体-水凝胶,消除缝合线并减少并发症。在这里,我们通过光化学或生物正交化学对透明质酸-胶原(HA-Col)复合水凝胶进行了直接的、并排的比较,以确定反应特异性对角膜伤口愈合的影响。在啮齿动物和兔子模型中进行的测试表明,与光化学交联的相同成分以及单独的生物正交交联胶原相比,生物正交化学交联的HA-Col凝胶复合材料的伤口愈合速度更快,光学上更有利。这些发现强调了生物化学参数可能对交联原位形成水凝胶作为角膜移植替代品的成功至关重要,具有扩大治疗范围和改善结果的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Regenerative Medicine
npj Regenerative Medicine Engineering-Biomedical Engineering
CiteScore
10.00
自引率
1.40%
发文量
71
审稿时长
12 weeks
期刊介绍: Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信