LPA released from dying cancer cells after chemotherapy inactivates Hippo signaling and promotes pancreatic cancer cell repopulation.

IF 4.9 2区 医学 Q2 CELL BIOLOGY
Yuzhi Liu, Jie Ding, Shumin Li, Anyi Jiang, Zhiqin Chen, Ming Quan
{"title":"LPA released from dying cancer cells after chemotherapy inactivates Hippo signaling and promotes pancreatic cancer cell repopulation.","authors":"Yuzhi Liu, Jie Ding, Shumin Li, Anyi Jiang, Zhiqin Chen, Ming Quan","doi":"10.1007/s13402-025-01038-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The Hippo pathway in the tumorigenesis and progression of PDAC, with lysophosphatidic acid (LPA) regulating the Hippo pathway to facilitate cancer progression. However, the impact of the Hippo signaling pathway on tumor repopulation in PDAC remains unreported.</p><p><strong>Methods: </strong>Direct and indirect co-culture models to investigate gemcitabine-induced apoptotic cells can facilitate the repopulation of residual tumor cells. Mass spectrometry analysis was conducted to assess the impact of gemcitabine treatment on the lipid metabolism of pancreatic cancer cells. ELISA assays confirmed gemcitabine promotes the release of LPA from apoptotic pancreatic cancer cells. The expression of Yes-associated protein 1 (YAP1) elucidated the underlying mechanism by which dying cells induce tumor repopulation using qRT-PCR and Western blot. We studied the biological function of pancreatic cancer cells using CCK-8, colony formation, and transwell invasion assays in vitro. Co-culture models were used to validate the impact of Hippo pathway on tumor repopulation, while flow cytometry was employed to assess the sensitivity of pancreatic cancer cells to gemcitabine in the context of Hippo pathway.</p><p><strong>Results: </strong>Gemcitabine-induced dying cells released LPA in a dose-dependent manner, which promoted the proliferation, clonal formation, and invasion of pancreatic cancer cells. Mechanistic studies showed that gemcitabine and LPA facilitated the translocation of YAP1 and induced the inactivation of the Hippo pathway. YAP1 overexpression significantly enhanced the activity of autotaxin, leading to stimulated pancreatic cancer cells to secrete LPA. This mechanism orchestrated a self-sustaining LPA-Hippo feedback loop, which drove the repopulation of residual tumor cells. Simultaneously, it was observed that suppressing LPA and YAP1 expression enhanced the sensitivity of pancreatic cancer cells to gemcitabine.</p><p><strong>Conclusion: </strong>Our investigation indicated that targeting the LPA-YAP1 signaling pathway could serve as a promising strategy to augment the overall therapeutic efficacy against PDAC.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-025-01038-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The Hippo pathway in the tumorigenesis and progression of PDAC, with lysophosphatidic acid (LPA) regulating the Hippo pathway to facilitate cancer progression. However, the impact of the Hippo signaling pathway on tumor repopulation in PDAC remains unreported.

Methods: Direct and indirect co-culture models to investigate gemcitabine-induced apoptotic cells can facilitate the repopulation of residual tumor cells. Mass spectrometry analysis was conducted to assess the impact of gemcitabine treatment on the lipid metabolism of pancreatic cancer cells. ELISA assays confirmed gemcitabine promotes the release of LPA from apoptotic pancreatic cancer cells. The expression of Yes-associated protein 1 (YAP1) elucidated the underlying mechanism by which dying cells induce tumor repopulation using qRT-PCR and Western blot. We studied the biological function of pancreatic cancer cells using CCK-8, colony formation, and transwell invasion assays in vitro. Co-culture models were used to validate the impact of Hippo pathway on tumor repopulation, while flow cytometry was employed to assess the sensitivity of pancreatic cancer cells to gemcitabine in the context of Hippo pathway.

Results: Gemcitabine-induced dying cells released LPA in a dose-dependent manner, which promoted the proliferation, clonal formation, and invasion of pancreatic cancer cells. Mechanistic studies showed that gemcitabine and LPA facilitated the translocation of YAP1 and induced the inactivation of the Hippo pathway. YAP1 overexpression significantly enhanced the activity of autotaxin, leading to stimulated pancreatic cancer cells to secrete LPA. This mechanism orchestrated a self-sustaining LPA-Hippo feedback loop, which drove the repopulation of residual tumor cells. Simultaneously, it was observed that suppressing LPA and YAP1 expression enhanced the sensitivity of pancreatic cancer cells to gemcitabine.

Conclusion: Our investigation indicated that targeting the LPA-YAP1 signaling pathway could serve as a promising strategy to augment the overall therapeutic efficacy against PDAC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular Oncology
Cellular Oncology ONCOLOGY-CELL BIOLOGY
CiteScore
10.30
自引率
1.50%
发文量
86
审稿时长
12 months
期刊介绍: The Official Journal of the International Society for Cellular Oncology Focuses on translational research Addresses the conversion of cell biology to clinical applications Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions. A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients. In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信