Sam B Weber, Andrew J Richardson, Christopher D H Thompson, Judith Brown, Fabio Campanella, Brendan J Godley, Nigel E Hussey, Jessica J Meeuwig, Paul Rose, Nicola Weber, Matthew J Witt, Annette C Broderick
{"title":"Shallow seamounts are \"oases\" and activity hubs for pelagic predators in a large-scale marine reserve.","authors":"Sam B Weber, Andrew J Richardson, Christopher D H Thompson, Judith Brown, Fabio Campanella, Brendan J Godley, Nigel E Hussey, Jessica J Meeuwig, Paul Rose, Nicola Weber, Matthew J Witt, Annette C Broderick","doi":"10.1371/journal.pbio.3003016","DOIUrl":null,"url":null,"abstract":"<p><p>Seamounts have been likened to \"oases\" of life in the comparative deserts of the open ocean, often harbouring high densities of threatened and exploited pelagic top predators. However, few such aggregations have been studied in any detail and the mechanisms that sustain them are poorly understood. Here, we present the findings of an integrated study of 3 previously unexplored seamounts in the tropical Atlantic, which aimed to investigate their significance as predator \"hotspots\" and inform their inclusion in one of world's largest marine reserves. Baited underwater video and visual census transects revealed enhanced diversity and biomass of pelagic top predators, including elevated abundances of 7 species of sharks, predatory fish, and seabirds, within 5 km of 2 shallow seamounts (<100 m), but not a third deeper seamount (260 m). Hydroacoustic biomass of low- and mid-trophic level \"prey\" was also significantly elevated within 2.5 km of shallow seamounts. However, we found no evidence of enhanced primary productivity over any feature, suggesting high faunal biomass is sustained by exogenous energy inputs. Relative biomass enrichment also increased with trophic level, ranging from a 2-fold increase for zooplankton to a 41-fold increase for sharks. Tracking of the dominant predator species revealed that individual sharks (Galapagos, silky) and tuna (yellowfin, bigeye) often resided around seamounts for months to years, with evidence of connectivity between features, and (in the case of sharks) were spatially aggregated in localised hotspots that coincided with areas of high mid-trophic biomass. However, tuna and silky sharks also appeared to use seamounts as \"hubs\" in more extensive pelagic foraging ranges, which may help explain disproportionately high predator density. Our results reinforce the conservation significance of shallow seamounts for many marine top predators and offer fundamental insights into their functional roles as both prey \"oases\" and activity hubs for these species.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 2","pages":"e3003016"},"PeriodicalIF":9.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003016","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Seamounts have been likened to "oases" of life in the comparative deserts of the open ocean, often harbouring high densities of threatened and exploited pelagic top predators. However, few such aggregations have been studied in any detail and the mechanisms that sustain them are poorly understood. Here, we present the findings of an integrated study of 3 previously unexplored seamounts in the tropical Atlantic, which aimed to investigate their significance as predator "hotspots" and inform their inclusion in one of world's largest marine reserves. Baited underwater video and visual census transects revealed enhanced diversity and biomass of pelagic top predators, including elevated abundances of 7 species of sharks, predatory fish, and seabirds, within 5 km of 2 shallow seamounts (<100 m), but not a third deeper seamount (260 m). Hydroacoustic biomass of low- and mid-trophic level "prey" was also significantly elevated within 2.5 km of shallow seamounts. However, we found no evidence of enhanced primary productivity over any feature, suggesting high faunal biomass is sustained by exogenous energy inputs. Relative biomass enrichment also increased with trophic level, ranging from a 2-fold increase for zooplankton to a 41-fold increase for sharks. Tracking of the dominant predator species revealed that individual sharks (Galapagos, silky) and tuna (yellowfin, bigeye) often resided around seamounts for months to years, with evidence of connectivity between features, and (in the case of sharks) were spatially aggregated in localised hotspots that coincided with areas of high mid-trophic biomass. However, tuna and silky sharks also appeared to use seamounts as "hubs" in more extensive pelagic foraging ranges, which may help explain disproportionately high predator density. Our results reinforce the conservation significance of shallow seamounts for many marine top predators and offer fundamental insights into their functional roles as both prey "oases" and activity hubs for these species.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.