Shallow seamounts are "oases" and activity hubs for pelagic predators in a large-scale marine reserve.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
PLoS Biology Pub Date : 2025-02-04 eCollection Date: 2025-02-01 DOI:10.1371/journal.pbio.3003016
Sam B Weber, Andrew J Richardson, Christopher D H Thompson, Judith Brown, Fabio Campanella, Brendan J Godley, Nigel E Hussey, Jessica J Meeuwig, Paul Rose, Nicola Weber, Matthew J Witt, Annette C Broderick
{"title":"Shallow seamounts are \"oases\" and activity hubs for pelagic predators in a large-scale marine reserve.","authors":"Sam B Weber, Andrew J Richardson, Christopher D H Thompson, Judith Brown, Fabio Campanella, Brendan J Godley, Nigel E Hussey, Jessica J Meeuwig, Paul Rose, Nicola Weber, Matthew J Witt, Annette C Broderick","doi":"10.1371/journal.pbio.3003016","DOIUrl":null,"url":null,"abstract":"<p><p>Seamounts have been likened to \"oases\" of life in the comparative deserts of the open ocean, often harbouring high densities of threatened and exploited pelagic top predators. However, few such aggregations have been studied in any detail and the mechanisms that sustain them are poorly understood. Here, we present the findings of an integrated study of 3 previously unexplored seamounts in the tropical Atlantic, which aimed to investigate their significance as predator \"hotspots\" and inform their inclusion in one of world's largest marine reserves. Baited underwater video and visual census transects revealed enhanced diversity and biomass of pelagic top predators, including elevated abundances of 7 species of sharks, predatory fish, and seabirds, within 5 km of 2 shallow seamounts (<100 m), but not a third deeper seamount (260 m). Hydroacoustic biomass of low- and mid-trophic level \"prey\" was also significantly elevated within 2.5 km of shallow seamounts. However, we found no evidence of enhanced primary productivity over any feature, suggesting high faunal biomass is sustained by exogenous energy inputs. Relative biomass enrichment also increased with trophic level, ranging from a 2-fold increase for zooplankton to a 41-fold increase for sharks. Tracking of the dominant predator species revealed that individual sharks (Galapagos, silky) and tuna (yellowfin, bigeye) often resided around seamounts for months to years, with evidence of connectivity between features, and (in the case of sharks) were spatially aggregated in localised hotspots that coincided with areas of high mid-trophic biomass. However, tuna and silky sharks also appeared to use seamounts as \"hubs\" in more extensive pelagic foraging ranges, which may help explain disproportionately high predator density. Our results reinforce the conservation significance of shallow seamounts for many marine top predators and offer fundamental insights into their functional roles as both prey \"oases\" and activity hubs for these species.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 2","pages":"e3003016"},"PeriodicalIF":9.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003016","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Seamounts have been likened to "oases" of life in the comparative deserts of the open ocean, often harbouring high densities of threatened and exploited pelagic top predators. However, few such aggregations have been studied in any detail and the mechanisms that sustain them are poorly understood. Here, we present the findings of an integrated study of 3 previously unexplored seamounts in the tropical Atlantic, which aimed to investigate their significance as predator "hotspots" and inform their inclusion in one of world's largest marine reserves. Baited underwater video and visual census transects revealed enhanced diversity and biomass of pelagic top predators, including elevated abundances of 7 species of sharks, predatory fish, and seabirds, within 5 km of 2 shallow seamounts (<100 m), but not a third deeper seamount (260 m). Hydroacoustic biomass of low- and mid-trophic level "prey" was also significantly elevated within 2.5 km of shallow seamounts. However, we found no evidence of enhanced primary productivity over any feature, suggesting high faunal biomass is sustained by exogenous energy inputs. Relative biomass enrichment also increased with trophic level, ranging from a 2-fold increase for zooplankton to a 41-fold increase for sharks. Tracking of the dominant predator species revealed that individual sharks (Galapagos, silky) and tuna (yellowfin, bigeye) often resided around seamounts for months to years, with evidence of connectivity between features, and (in the case of sharks) were spatially aggregated in localised hotspots that coincided with areas of high mid-trophic biomass. However, tuna and silky sharks also appeared to use seamounts as "hubs" in more extensive pelagic foraging ranges, which may help explain disproportionately high predator density. Our results reinforce the conservation significance of shallow seamounts for many marine top predators and offer fundamental insights into their functional roles as both prey "oases" and activity hubs for these species.

浅海海山是大型海洋保护区中中上层掠食者的 "绿洲 "和活动中心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信