Precision therapeutics for inflammatory bowel disease: advancing ROS-responsive nanoparticles for targeted and multifunctional drug delivery

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Xiuping Wan, Caijie Zhang, Pengyu Lei, Hanbing Wang, Rongbing Chen, Qinsi Yang, Yongwei Cheng, Wei Wu, Da Sun and Xiaofei Hong
{"title":"Precision therapeutics for inflammatory bowel disease: advancing ROS-responsive nanoparticles for targeted and multifunctional drug delivery","authors":"Xiuping Wan, Caijie Zhang, Pengyu Lei, Hanbing Wang, Rongbing Chen, Qinsi Yang, Yongwei Cheng, Wei Wu, Da Sun and Xiaofei Hong","doi":"10.1039/D4TB02868F","DOIUrl":null,"url":null,"abstract":"<p >Inflammatory bowel disease (IBD) is a severe chronic intestinal disorder with a rising global incidence. Current therapies, including the delivery of anti-inflammatory drugs and probiotics, face significant challenges in terms of safety, stability, and efficacy. In IBD patients, the activity of antioxidant enzymes (<em>e.g.</em>, superoxide dismutase, glutathione peroxidase, and glutathione reductase) is reduced at the site of intestinal inflammation, leading to the accumulation of reactive oxygen species (ROS). This accumulation damages the intestinal mucosa, disrupts tight junctions between cells, and compromises the integrity of the intestinal barrier, exacerbating IBD symptoms. Therefore, nanoparticles responsive to ROS and capable of mimicking antioxidant enzyme activity, such as boronates, polydopamine, sulfides, and metal nanozymes, have emerged as promising tools. These nanoparticles can respond to elevated ROS levels in inflamed intestinal regions and release drugs to effectively neutralize ROS, making them ideal candidates for IBD treatment. This review discusses the application of various ROS-responsive nanomaterial delivery systems in IBD therapy, highlights current challenges, and outlines future research directions. Furthermore, we explore the “layered programmable delivery” strategy, which combines ROS-responsive nanoparticles with pH-responsive and cell membrane-targeted nanoparticles. This strategy has the potential to overcome the limitations of single-mechanism targeted drug delivery, enabling multi-range and multi-functional treatment approaches that significantly enhance delivery efficiency, providing new insights for the future of localized IBD treatment.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 10","pages":" 3245-3269"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02868f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Inflammatory bowel disease (IBD) is a severe chronic intestinal disorder with a rising global incidence. Current therapies, including the delivery of anti-inflammatory drugs and probiotics, face significant challenges in terms of safety, stability, and efficacy. In IBD patients, the activity of antioxidant enzymes (e.g., superoxide dismutase, glutathione peroxidase, and glutathione reductase) is reduced at the site of intestinal inflammation, leading to the accumulation of reactive oxygen species (ROS). This accumulation damages the intestinal mucosa, disrupts tight junctions between cells, and compromises the integrity of the intestinal barrier, exacerbating IBD symptoms. Therefore, nanoparticles responsive to ROS and capable of mimicking antioxidant enzyme activity, such as boronates, polydopamine, sulfides, and metal nanozymes, have emerged as promising tools. These nanoparticles can respond to elevated ROS levels in inflamed intestinal regions and release drugs to effectively neutralize ROS, making them ideal candidates for IBD treatment. This review discusses the application of various ROS-responsive nanomaterial delivery systems in IBD therapy, highlights current challenges, and outlines future research directions. Furthermore, we explore the “layered programmable delivery” strategy, which combines ROS-responsive nanoparticles with pH-responsive and cell membrane-targeted nanoparticles. This strategy has the potential to overcome the limitations of single-mechanism targeted drug delivery, enabling multi-range and multi-functional treatment approaches that significantly enhance delivery efficiency, providing new insights for the future of localized IBD treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信