Taxifolin mitigates cisplatin-induced testicular damage by reducing inflammation, oxidative stress, and apoptosis in mice.

IF 2.7 4区 生物学 Q1 ANATOMY & MORPHOLOGY
Alayn' Al-Marddyah A Al-Khawalde, Mohammad H Abukhalil, Osama Y Althunibat, Fatima A Jaber, Fatima S Alaryani, Alaa M Saleh, Aishah E Albalawi, Reem H Alhasani
{"title":"Taxifolin mitigates cisplatin-induced testicular damage by reducing inflammation, oxidative stress, and apoptosis in mice.","authors":"Alayn' Al-Marddyah A Al-Khawalde, Mohammad H Abukhalil, Osama Y Althunibat, Fatima A Jaber, Fatima S Alaryani, Alaa M Saleh, Aishah E Albalawi, Reem H Alhasani","doi":"10.1016/j.tice.2025.102767","DOIUrl":null,"url":null,"abstract":"<p><p>Cisplatin (CIS) is effective against various cancers but causes significant side effects, including testicular damage. This study investigated the effects of taxifolin (TX), a potent flavonoid with well-known benefits, against CIS-induced testicular injury. Mice received TX (25 and 50 mg/kg) orally for 14 days, with a single injection of CIS (7 mg/kg) on day 8. CIS significantly impaired sperm parameters (motility, viability, and count) and caused notable histopathological alterations in testicular tissue. CIS-treated testicular tissue exhibited elevated MDA and protein carbonyl levels, alongside decreased antioxidant defenses, including GSH, SOD, and catalase activities. TX significantly mitigated the deterioration of sperm parameters and prevented testicular tissue damage. It also restored antioxidant levels and reduced MDA and protein carbonyl contents. Furthermore, CIS elevated pro-inflammatory markers (NF-κB p65, TNF-α, and IL-1β) and apoptosis markers (Bax and caspase-3), while reducing anti-apoptotic Bcl-2 levels. TX effectively suppressed NF-κB activation, reduced pro-inflammatory cytokine production, and inhibited apoptosis in CIS-treated mice. Overall, TX alleviated CIS-induced oxidative stress, inflammation, apoptosis, and testicular damage, thereby improving sperm quality. These findings emphasize TX's potential as a protective agent against CIS-induced testicular damage and warrant further research in human applications.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"102767"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2025.102767","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cisplatin (CIS) is effective against various cancers but causes significant side effects, including testicular damage. This study investigated the effects of taxifolin (TX), a potent flavonoid with well-known benefits, against CIS-induced testicular injury. Mice received TX (25 and 50 mg/kg) orally for 14 days, with a single injection of CIS (7 mg/kg) on day 8. CIS significantly impaired sperm parameters (motility, viability, and count) and caused notable histopathological alterations in testicular tissue. CIS-treated testicular tissue exhibited elevated MDA and protein carbonyl levels, alongside decreased antioxidant defenses, including GSH, SOD, and catalase activities. TX significantly mitigated the deterioration of sperm parameters and prevented testicular tissue damage. It also restored antioxidant levels and reduced MDA and protein carbonyl contents. Furthermore, CIS elevated pro-inflammatory markers (NF-κB p65, TNF-α, and IL-1β) and apoptosis markers (Bax and caspase-3), while reducing anti-apoptotic Bcl-2 levels. TX effectively suppressed NF-κB activation, reduced pro-inflammatory cytokine production, and inhibited apoptosis in CIS-treated mice. Overall, TX alleviated CIS-induced oxidative stress, inflammation, apoptosis, and testicular damage, thereby improving sperm quality. These findings emphasize TX's potential as a protective agent against CIS-induced testicular damage and warrant further research in human applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue & cell
Tissue & cell 医学-解剖学与形态学
CiteScore
3.90
自引率
0.00%
发文量
234
期刊介绍: Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed. Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信