Uterine stromal but not epithelial PTGS2 is critical for murine pregnancy success.

IF 3.7 3区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Reproduction Pub Date : 2025-03-03 Print Date: 2025-04-01 DOI:10.1530/REP-24-0408
Noura Massri, Ripla Arora
{"title":"Uterine stromal but not epithelial PTGS2 is critical for murine pregnancy success.","authors":"Noura Massri, Ripla Arora","doi":"10.1530/REP-24-0408","DOIUrl":null,"url":null,"abstract":"<p><p>The use of non-steroidal anti-inflammatory drugs that target prostaglandin synthase (PTGS) enzymes has been implicated in miscarriage. Further, PTGS2-derived prostaglandins are reduced in the endometrium of patients with a history of implantation failure. However, in the mouse model of pregnancy, peri-implantation PTGS2 function is controversial. Some studies suggest that Ptgs2 -/- mice display deficits in ovulation, fertilization and implantation, while other studies suggest a role for PTGS2 only in ovulation but not implantation. Further, the uterine cell type responsible for PTGS2 function and the role of PTGS2 in regulating implantation chamber formation are not known. To address this, we generated tissue-specific deletion models of Ptgs2. We observed that PTGS2 ablation from the epithelium alone in Ltf cre/+ ; Ptgs2 f/f mice and in both the epithelium and endothelium of the Pax2 cre/+ ; Ptgs2 f/f mice does not affect embryo implantation. Further, deletion of PTGS2 in the ovary, oviduct and uterus using Pgr cre/+ ; Ptgs2 f/f does not disrupt pre-implantation events but instead interferes with post-implantation chamber formation, vascular remodeling and decidualization. While all embryos initiate chamber formation, more than half of the embryos fail to transition from blastocyst to epiblast stage, resulting in embryo death and resorbing decidual sites at mid-gestation. Thus, our results suggest no role for uterine epithelial PTGS2 in early pregnancy but instead highlight a role for uterine stromal PTGS2 in modulating post-implantation embryo and implantation chamber growth. Overall, our study provides clarity on the compartment-specific role of PTGS2 and provides a valuable model for further investigating the role of stromal PTGS2 in post-implantation embryo development.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905370/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-24-0408","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The use of non-steroidal anti-inflammatory drugs that target prostaglandin synthase (PTGS) enzymes has been implicated in miscarriage. Further, PTGS2-derived prostaglandins are reduced in the endometrium of patients with a history of implantation failure. However, in the mouse model of pregnancy, peri-implantation PTGS2 function is controversial. Some studies suggest that Ptgs2 -/- mice display deficits in ovulation, fertilization and implantation, while other studies suggest a role for PTGS2 only in ovulation but not implantation. Further, the uterine cell type responsible for PTGS2 function and the role of PTGS2 in regulating implantation chamber formation are not known. To address this, we generated tissue-specific deletion models of Ptgs2. We observed that PTGS2 ablation from the epithelium alone in Ltf cre/+ ; Ptgs2 f/f mice and in both the epithelium and endothelium of the Pax2 cre/+ ; Ptgs2 f/f mice does not affect embryo implantation. Further, deletion of PTGS2 in the ovary, oviduct and uterus using Pgr cre/+ ; Ptgs2 f/f does not disrupt pre-implantation events but instead interferes with post-implantation chamber formation, vascular remodeling and decidualization. While all embryos initiate chamber formation, more than half of the embryos fail to transition from blastocyst to epiblast stage, resulting in embryo death and resorbing decidual sites at mid-gestation. Thus, our results suggest no role for uterine epithelial PTGS2 in early pregnancy but instead highlight a role for uterine stromal PTGS2 in modulating post-implantation embryo and implantation chamber growth. Overall, our study provides clarity on the compartment-specific role of PTGS2 and provides a valuable model for further investigating the role of stromal PTGS2 in post-implantation embryo development.

子宫间质而非上皮PTGS2对小鼠妊娠成功至关重要。
使用针对前列腺素合成酶(PTGS)酶的非甾体抗炎药与流产有关。此外,有植入失败史的患者子宫内膜中ptgs2来源的前列腺素减少。然而,在小鼠妊娠模型中,PTGS2的着床期功能存在争议。一些研究表明Ptgs2-/-小鼠在排卵、受精和着床方面表现出缺陷,而另一些研究表明Ptgs2仅在排卵中起作用,而在着床中不起作用。此外,负责PTGS2功能的子宫细胞类型以及PTGS2在调节着床室形成中的作用尚不清楚。为了解决这个问题,我们建立了Ptgs2的组织特异性缺失模型。我们观察到ltfre /+中PTGS2仅从上皮消融;Ptgs2f/f小鼠和Pax2cre/+的上皮和内皮细胞;Ptgs2f/f小鼠不影响胚胎着床。此外,使用Pgrcre/+检测卵巢、输卵管和子宫中PTGS2的缺失;Ptgs2f/f不破坏植入前的事件,而是干扰植入后腔室的形成、血管重塑和脱个体化。虽然所有胚胎都开始腔室形成,但超过一半的胚胎不能从囊胚过渡到外胚层阶段,导致胚胎死亡并在妊娠中期重新吸收蜕膜。因此,我们的研究结果表明子宫上皮PTGS2在妊娠早期没有作用,而是强调了子宫间质PTGS2在调节着床后胚胎和着床室生长中的作用。总之,我们的研究明确了PTGS2在细胞室特异性中的作用,并为进一步研究间质PTGS2在着床后胚胎发育中的作用提供了有价值的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reproduction
Reproduction 生物-发育生物学
CiteScore
7.40
自引率
2.60%
发文量
199
审稿时长
4-8 weeks
期刊介绍: Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction. Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease. Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信