A Chinese Knowledge Graph Dataset in the Field of Scientific Fitness.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shutong Du, Zhitong Liu, Bingyu Pan
{"title":"A Chinese Knowledge Graph Dataset in the Field of Scientific Fitness.","authors":"Shutong Du, Zhitong Liu, Bingyu Pan","doi":"10.1038/s41597-025-04519-6","DOIUrl":null,"url":null,"abstract":"<p><p>To promote the development of scientific fitness research and practice, we propose the Chinese Knowledge Graph Dataset in the Field of Scientific Fitness (FitKG-CN). This knowledge graph contains over 10,000 fitness-related terms, categorized into eight main groups: body parts, items of exercise, fitness movement, equipment and tools, exercise goals, anatomical structures, nutrients, and technical terms. The construction of FitKG-CN is based on authoritative data sources, undergoing rigorous preprocessing, including noise removal, format standardization, and normalization of entities and relationships. The data is manually annotated on a professional platform and ultimately stored in a Neo4j graph database for visualization. Additionally, we trained a Chinese SpERT model using the manually annotated data to enhance the automation of data processing. The experimental results show that the model achieved an F1 score of 94.05% in entity recognition tasks and 82.00% in relation extraction tasks, validating the effectiveness of the model and improving the scalability of the dataset.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"205"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794866/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04519-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To promote the development of scientific fitness research and practice, we propose the Chinese Knowledge Graph Dataset in the Field of Scientific Fitness (FitKG-CN). This knowledge graph contains over 10,000 fitness-related terms, categorized into eight main groups: body parts, items of exercise, fitness movement, equipment and tools, exercise goals, anatomical structures, nutrients, and technical terms. The construction of FitKG-CN is based on authoritative data sources, undergoing rigorous preprocessing, including noise removal, format standardization, and normalization of entities and relationships. The data is manually annotated on a professional platform and ultimately stored in a Neo4j graph database for visualization. Additionally, we trained a Chinese SpERT model using the manually annotated data to enhance the automation of data processing. The experimental results show that the model achieved an F1 score of 94.05% in entity recognition tasks and 82.00% in relation extraction tasks, validating the effectiveness of the model and improving the scalability of the dataset.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信