Dong Ki Kim, Joo Hyeong Suh, Yoojin Hong, Daeun Kim, Min-Sik Park, Jung Ho Kim
{"title":"Silver embedded porous carbon composite for high-performance lithium-metal anode.","authors":"Dong Ki Kim, Joo Hyeong Suh, Yoojin Hong, Daeun Kim, Min-Sik Park, Jung Ho Kim","doi":"10.1080/14686996.2025.2455371","DOIUrl":null,"url":null,"abstract":"<p><p>Using a lithium (Li) metal anode is essential for high-energy batteries, however, dendritic Li growth is unavoidable during Li plating and stripping processes. Strategically, a porous carbon structure derived from a metal-organic framework is suggested for directly storing metallic Li, although problems still exist with plating Li from the core to the surface and with stripping Li from the surface. Herein, we strategically utilize the carbon structure of zeolitic imidazolate framework-8 as an anode and replace the inactive residual Zn with Ag through galvanic displacement. The strong affinity of Ag for Li ions facilitates the transfer of plating from the surface of the carbon structure to its interior. After determining the optimal conditions for galvanic displacement by varying reaction times and temperatures, we carefully evaluate the electrochemical performance.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2455371"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792119/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2025.2455371","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Using a lithium (Li) metal anode is essential for high-energy batteries, however, dendritic Li growth is unavoidable during Li plating and stripping processes. Strategically, a porous carbon structure derived from a metal-organic framework is suggested for directly storing metallic Li, although problems still exist with plating Li from the core to the surface and with stripping Li from the surface. Herein, we strategically utilize the carbon structure of zeolitic imidazolate framework-8 as an anode and replace the inactive residual Zn with Ag through galvanic displacement. The strong affinity of Ag for Li ions facilitates the transfer of plating from the surface of the carbon structure to its interior. After determining the optimal conditions for galvanic displacement by varying reaction times and temperatures, we carefully evaluate the electrochemical performance.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.