Silver embedded porous carbon composite for high-performance lithium-metal anode.

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Science and Technology of Advanced Materials Pub Date : 2025-01-31 eCollection Date: 2025-01-01 DOI:10.1080/14686996.2025.2455371
Dong Ki Kim, Joo Hyeong Suh, Yoojin Hong, Daeun Kim, Min-Sik Park, Jung Ho Kim
{"title":"Silver embedded porous carbon composite for high-performance lithium-metal anode.","authors":"Dong Ki Kim, Joo Hyeong Suh, Yoojin Hong, Daeun Kim, Min-Sik Park, Jung Ho Kim","doi":"10.1080/14686996.2025.2455371","DOIUrl":null,"url":null,"abstract":"<p><p>Using a lithium (Li) metal anode is essential for high-energy batteries, however, dendritic Li growth is unavoidable during Li plating and stripping processes. Strategically, a porous carbon structure derived from a metal-organic framework is suggested for directly storing metallic Li, although problems still exist with plating Li from the core to the surface and with stripping Li from the surface. Herein, we strategically utilize the carbon structure of zeolitic imidazolate framework-8 as an anode and replace the inactive residual Zn with Ag through galvanic displacement. The strong affinity of Ag for Li ions facilitates the transfer of plating from the surface of the carbon structure to its interior. After determining the optimal conditions for galvanic displacement by varying reaction times and temperatures, we carefully evaluate the electrochemical performance.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2455371"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792119/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2025.2455371","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using a lithium (Li) metal anode is essential for high-energy batteries, however, dendritic Li growth is unavoidable during Li plating and stripping processes. Strategically, a porous carbon structure derived from a metal-organic framework is suggested for directly storing metallic Li, although problems still exist with plating Li from the core to the surface and with stripping Li from the surface. Herein, we strategically utilize the carbon structure of zeolitic imidazolate framework-8 as an anode and replace the inactive residual Zn with Ag through galvanic displacement. The strong affinity of Ag for Li ions facilitates the transfer of plating from the surface of the carbon structure to its interior. After determining the optimal conditions for galvanic displacement by varying reaction times and temperatures, we carefully evaluate the electrochemical performance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信