Assessment of groundwater suitability for drinking and irrigation purposes with probable health threats in a semiarid river basin of South India.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Meera Rajan, D Karunanidhi, B Gurugnanam, T Subramani
{"title":"Assessment of groundwater suitability for drinking and irrigation purposes with probable health threats in a semiarid river basin of South India.","authors":"Meera Rajan, D Karunanidhi, B Gurugnanam, T Subramani","doi":"10.1002/wer.70011","DOIUrl":null,"url":null,"abstract":"<p><p>In the semiarid river basin of south India, the present study focuses on the appropriateness of water for drinking and irrigation as well as the risks to human health posed by pollutants. A total of 68 groundwater samples were evaluated for irrigation and consumption purposes. With a high electrical conductivity peaking at 3430 μS/cm and an alkaline composition, the groundwater has a high salinity and poor water quality. Durov's figure displays a trend along the dissolution or mixing line and identifies the geochemical facies of groundwater samples. According to water quality indexes, the majority of samples are categorized as unfit for human consumption (26.47%), extremely bad (36.76%), and poor (26.47%). According to elemental concentrations, the data are grouped into three clusters using hierarchical cluster analysis. According to the geographical distribution, nitrate levels are safe over about 320.25 km<sup>2</sup> and dangerous over about 121.10 km<sup>2</sup>, whereas fluoride levels are safe over about 293.92 km<sup>2</sup> and dangerous over about 147.43 km<sup>2</sup>. About 50.65 km<sup>2</sup>, 14.70% of the samples, fell into the no restriction category for irrigation, indicating acceptable standards. Low sodium levels in soils are indicated by parameters like SAR, %Na, PI, RSC, MR, and KR; SAR values fall into the C2S1, C3S1, and C4S1 categories. According to Doneen's diagram, 70.5% of samples had a PI >75, indicating suitability; the Wilcox diagram classified 22.05% of samples as excellent and 69.11% as good to permissible for irrigation. According to human health risk assessment, 75% of babies, 63% of children, 75% of teens, and 54% of adults have THI values >1 for fluoride. About 45% of newborns, 42% of kids, 45% of teenagers, and 29% of adults are at risk for nitrate. Infants, kids, and teenagers are at the danger. In order to safeguard human health against fluoride and nitrate, the study emphasizes the necessity of efficiently managing groundwater resources, lowering agricultural pollution, and assuring clean drinking water. PRACTITIONER POINTS: In the area, 79.25 km<sup>2</sup> has good drinking water quality based on DWQI. Based on IWQI, 70.33 km<sup>2</sup> area is recognized as suitable for agricultural practices. Geogenic and anthropogenic activities contribute to fluoride and nitrate pollution in water. Based on THI, infants and children are more prone to fluoride and nitrate contamination.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"97 2","pages":"e70011"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.70011","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the semiarid river basin of south India, the present study focuses on the appropriateness of water for drinking and irrigation as well as the risks to human health posed by pollutants. A total of 68 groundwater samples were evaluated for irrigation and consumption purposes. With a high electrical conductivity peaking at 3430 μS/cm and an alkaline composition, the groundwater has a high salinity and poor water quality. Durov's figure displays a trend along the dissolution or mixing line and identifies the geochemical facies of groundwater samples. According to water quality indexes, the majority of samples are categorized as unfit for human consumption (26.47%), extremely bad (36.76%), and poor (26.47%). According to elemental concentrations, the data are grouped into three clusters using hierarchical cluster analysis. According to the geographical distribution, nitrate levels are safe over about 320.25 km2 and dangerous over about 121.10 km2, whereas fluoride levels are safe over about 293.92 km2 and dangerous over about 147.43 km2. About 50.65 km2, 14.70% of the samples, fell into the no restriction category for irrigation, indicating acceptable standards. Low sodium levels in soils are indicated by parameters like SAR, %Na, PI, RSC, MR, and KR; SAR values fall into the C2S1, C3S1, and C4S1 categories. According to Doneen's diagram, 70.5% of samples had a PI >75, indicating suitability; the Wilcox diagram classified 22.05% of samples as excellent and 69.11% as good to permissible for irrigation. According to human health risk assessment, 75% of babies, 63% of children, 75% of teens, and 54% of adults have THI values >1 for fluoride. About 45% of newborns, 42% of kids, 45% of teenagers, and 29% of adults are at risk for nitrate. Infants, kids, and teenagers are at the danger. In order to safeguard human health against fluoride and nitrate, the study emphasizes the necessity of efficiently managing groundwater resources, lowering agricultural pollution, and assuring clean drinking water. PRACTITIONER POINTS: In the area, 79.25 km2 has good drinking water quality based on DWQI. Based on IWQI, 70.33 km2 area is recognized as suitable for agricultural practices. Geogenic and anthropogenic activities contribute to fluoride and nitrate pollution in water. Based on THI, infants and children are more prone to fluoride and nitrate contamination.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信