Enabling high-throughput quantitative wood anatomy through a dedicated pipeline.

IF 4.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Jan Van den Bulcke, Louis Verschuren, Ruben De Blaere, Simon Vansuyt, Maxime Dekegeleer, Pierre Kibleur, Olivier Pieters, Tom De Mil, Wannes Hubau, Hans Beeckman, Joris Van Acker, Francis Wyffels
{"title":"Enabling high-throughput quantitative wood anatomy through a dedicated pipeline.","authors":"Jan Van den Bulcke, Louis Verschuren, Ruben De Blaere, Simon Vansuyt, Maxime Dekegeleer, Pierre Kibleur, Olivier Pieters, Tom De Mil, Wannes Hubau, Hans Beeckman, Joris Van Acker, Francis Wyffels","doi":"10.1186/s13007-025-01330-7","DOIUrl":null,"url":null,"abstract":"<p><p>Throughout their lifetime, trees store valuable environmental information within their wood. Unlocking this information requires quantitative analysis, in most cases of the surface of wood. The conventional pathway for high-resolution digitization of wood surfaces and segmentation of wood features requires several manual and time consuming steps. We present a semi-automated high-throughput pipeline for sample preparation, gigapixel imaging, and analysis of the anatomy of the end-grain surfaces of discs and increment cores. The pipeline consists of a collaborative robot (Cobot) with sander for surface preparation, a custom-built open-source robot for gigapixel imaging (Gigapixel Woodbot), and a Python routine for deep-learning analysis of gigapixel images. The robotic sander allows to obtain high-quality surfaces with minimal sanding or polishing artefacts. It is designed for precise and consistent sanding and polishing of wood surfaces, revealing detailed wood anatomical structures by applying consecutively finer grits of sandpaper. Multiple samples can be processed autonomously at once. The custom-built open-source Gigapixel Woodbot is a modular imaging system that enables automated scanning of large wood surfaces. The frame of the robot is a CNC (Computer Numerical Control) machine to position a camera above the objects. Images are taken at different focus points, with a small overlap between consecutive images in the X-Y plane, and merged by mosaic stitching, into a gigapixel image. Multiple scans can be initiated through the graphical application, allowing the system to autonomously image several objects and large surfaces. Finally, a Python routine using a trained YOLOv8 deep learning network allows for fully automated analysis of the gigapixel images, here shown as a proof-of-concept for the quantification of vessels and rays on full disc surfaces and increment cores. We present fully digitized beech discs of 30-35 cm diameter at a resolution of 2.25  <math><mi>μ</mi></math> m, for which we automatically quantified the number of vessels (up to 13 million) and rays. We showcase the same process for five 30 cm length beech increment cores also digitized at a resolution of 2.25  <math><mi>μ</mi></math> m, and generated pith-to-bark profiles of vessel density. This pipeline allows researchers to perform high-detail analysis of anatomical features on large surfaces, test fundamental hypotheses in ecophysiology, ecology, dendroclimatology, and many more with sufficient sample replication.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"11"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01330-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Throughout their lifetime, trees store valuable environmental information within their wood. Unlocking this information requires quantitative analysis, in most cases of the surface of wood. The conventional pathway for high-resolution digitization of wood surfaces and segmentation of wood features requires several manual and time consuming steps. We present a semi-automated high-throughput pipeline for sample preparation, gigapixel imaging, and analysis of the anatomy of the end-grain surfaces of discs and increment cores. The pipeline consists of a collaborative robot (Cobot) with sander for surface preparation, a custom-built open-source robot for gigapixel imaging (Gigapixel Woodbot), and a Python routine for deep-learning analysis of gigapixel images. The robotic sander allows to obtain high-quality surfaces with minimal sanding or polishing artefacts. It is designed for precise and consistent sanding and polishing of wood surfaces, revealing detailed wood anatomical structures by applying consecutively finer grits of sandpaper. Multiple samples can be processed autonomously at once. The custom-built open-source Gigapixel Woodbot is a modular imaging system that enables automated scanning of large wood surfaces. The frame of the robot is a CNC (Computer Numerical Control) machine to position a camera above the objects. Images are taken at different focus points, with a small overlap between consecutive images in the X-Y plane, and merged by mosaic stitching, into a gigapixel image. Multiple scans can be initiated through the graphical application, allowing the system to autonomously image several objects and large surfaces. Finally, a Python routine using a trained YOLOv8 deep learning network allows for fully automated analysis of the gigapixel images, here shown as a proof-of-concept for the quantification of vessels and rays on full disc surfaces and increment cores. We present fully digitized beech discs of 30-35 cm diameter at a resolution of 2.25  μ m, for which we automatically quantified the number of vessels (up to 13 million) and rays. We showcase the same process for five 30 cm length beech increment cores also digitized at a resolution of 2.25  μ m, and generated pith-to-bark profiles of vessel density. This pipeline allows researchers to perform high-detail analysis of anatomical features on large surfaces, test fundamental hypotheses in ecophysiology, ecology, dendroclimatology, and many more with sufficient sample replication.

通过专用管道实现高通量定量木材解剖。
在它们的一生中,树木将有价值的环境信息储存在它们的木材中。解开这些信息需要定量分析,在大多数情况下是木材表面。木材表面的高分辨率数字化和木材特征分割的传统途径需要几个手动和耗时的步骤。我们提出了一种半自动化的高通量管道,用于样品制备,十亿像素成像,以及盘和增量芯的端粒表面解剖分析。该管道包括一个协作机器人(Cobot),用于表面处理的磨砂机,一个用于十亿像素成像的定制开源机器人(gigapixel Woodbot),以及一个用于十亿像素图像深度学习分析的Python例程。机器人磨砂机可以用最少的打磨或抛光工件获得高质量的表面。它是为精确和一致的打磨和抛光木材表面而设计的,通过连续应用更细的砂纸颗粒来揭示详细的木材解剖结构。多个样品可以同时自动处理。定制的开源Gigapixel Woodbot是一个模块化的成像系统,可以自动扫描大型木材表面。机器人的框架是一台CNC(计算机数字控制)机器,用于将相机放置在物体上方。图像在不同的焦点上拍摄,在X-Y平面上连续图像之间有少量重叠,并通过马赛克拼接合并成十亿像素的图像。通过图形应用程序可以启动多次扫描,使系统能够自主地对多个物体和大型表面进行成像。最后,使用经过训练的YOLOv8深度学习网络的Python例程允许对十亿像素图像进行全自动分析,这里显示的是对全圆盘表面和增量核心上的血管和射线进行量化的概念验证。我们以2.25 μ m的分辨率展示了直径30-35 cm的完全数字化的山毛榉圆盘,我们自动量化了血管(高达1300万)和射线的数量。我们对5个30 cm长的山毛榉增量岩心进行了相同的处理,同样以2.25 μ m的分辨率进行了数字化处理,并生成了血管密度的髓-树皮剖面。这条管道允许研究人员对大表面的解剖特征进行高细节分析,测试生态生理学、生态学、树木气候学等方面的基本假设,并提供足够的样本复制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Methods
Plant Methods 生物-植物科学
CiteScore
9.20
自引率
3.90%
发文量
121
审稿时长
2 months
期刊介绍: Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences. There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics. Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信