Foundation Models in Radiology: What, How, Why, and Why Not.

IF 12.1 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Radiology Pub Date : 2025-02-01 DOI:10.1148/radiol.240597
Magdalini Paschali, Zhihong Chen, Louis Blankemeier, Maya Varma, Alaa Youssef, Christian Bluethgen, Curtis Langlotz, Sergios Gatidis, Akshay Chaudhari
{"title":"Foundation Models in Radiology: What, How, Why, and Why Not.","authors":"Magdalini Paschali, Zhihong Chen, Louis Blankemeier, Maya Varma, Alaa Youssef, Christian Bluethgen, Curtis Langlotz, Sergios Gatidis, Akshay Chaudhari","doi":"10.1148/radiol.240597","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in artificial intelligence have witnessed the emergence of large-scale deep learning models capable of interpreting and generating both textual and imaging data. Such models, typically referred to as foundation models (FMs), are trained on extensive corpora of unlabeled data and demonstrate high performance across various tasks. FMs have recently received extensive attention from academic, industry, and regulatory bodies. Given the potentially transformative impact that FMs can have on the field of radiology, radiologists must be aware of potential pathways to train these radiology-specific FMs, including understanding both the benefits and challenges. Thus, this review aims to explain the fundamental concepts and terms of FMs in radiology, with a specific focus on the requirements of training data, model training paradigms, model capabilities, and evaluation strategies. Overall, the goal of this review is to unify technical advances and clinical needs for safe and responsible training of FMs in radiology to ultimately benefit patients, providers, and radiologists.</p>","PeriodicalId":20896,"journal":{"name":"Radiology","volume":"314 2","pages":"e240597"},"PeriodicalIF":12.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1148/radiol.240597","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in artificial intelligence have witnessed the emergence of large-scale deep learning models capable of interpreting and generating both textual and imaging data. Such models, typically referred to as foundation models (FMs), are trained on extensive corpora of unlabeled data and demonstrate high performance across various tasks. FMs have recently received extensive attention from academic, industry, and regulatory bodies. Given the potentially transformative impact that FMs can have on the field of radiology, radiologists must be aware of potential pathways to train these radiology-specific FMs, including understanding both the benefits and challenges. Thus, this review aims to explain the fundamental concepts and terms of FMs in radiology, with a specific focus on the requirements of training data, model training paradigms, model capabilities, and evaluation strategies. Overall, the goal of this review is to unify technical advances and clinical needs for safe and responsible training of FMs in radiology to ultimately benefit patients, providers, and radiologists.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiology
Radiology 医学-核医学
CiteScore
35.20
自引率
3.00%
发文量
596
审稿时长
3.6 months
期刊介绍: Published regularly since 1923 by the Radiological Society of North America (RSNA), Radiology has long been recognized as the authoritative reference for the most current, clinically relevant and highest quality research in the field of radiology. Each month the journal publishes approximately 240 pages of peer-reviewed original research, authoritative reviews, well-balanced commentary on significant articles, and expert opinion on new techniques and technologies. Radiology publishes cutting edge and impactful imaging research articles in radiology and medical imaging in order to help improve human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信