Magdalini Paschali, Zhihong Chen, Louis Blankemeier, Maya Varma, Alaa Youssef, Christian Bluethgen, Curtis Langlotz, Sergios Gatidis, Akshay Chaudhari
{"title":"Foundation Models in Radiology: What, How, Why, and Why Not.","authors":"Magdalini Paschali, Zhihong Chen, Louis Blankemeier, Maya Varma, Alaa Youssef, Christian Bluethgen, Curtis Langlotz, Sergios Gatidis, Akshay Chaudhari","doi":"10.1148/radiol.240597","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in artificial intelligence have witnessed the emergence of large-scale deep learning models capable of interpreting and generating both textual and imaging data. Such models, typically referred to as foundation models (FMs), are trained on extensive corpora of unlabeled data and demonstrate high performance across various tasks. FMs have recently received extensive attention from academic, industry, and regulatory bodies. Given the potentially transformative impact that FMs can have on the field of radiology, radiologists must be aware of potential pathways to train these radiology-specific FMs, including understanding both the benefits and challenges. Thus, this review aims to explain the fundamental concepts and terms of FMs in radiology, with a specific focus on the requirements of training data, model training paradigms, model capabilities, and evaluation strategies. Overall, the goal of this review is to unify technical advances and clinical needs for safe and responsible training of FMs in radiology to ultimately benefit patients, providers, and radiologists.</p>","PeriodicalId":20896,"journal":{"name":"Radiology","volume":"314 2","pages":"e240597"},"PeriodicalIF":12.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1148/radiol.240597","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in artificial intelligence have witnessed the emergence of large-scale deep learning models capable of interpreting and generating both textual and imaging data. Such models, typically referred to as foundation models (FMs), are trained on extensive corpora of unlabeled data and demonstrate high performance across various tasks. FMs have recently received extensive attention from academic, industry, and regulatory bodies. Given the potentially transformative impact that FMs can have on the field of radiology, radiologists must be aware of potential pathways to train these radiology-specific FMs, including understanding both the benefits and challenges. Thus, this review aims to explain the fundamental concepts and terms of FMs in radiology, with a specific focus on the requirements of training data, model training paradigms, model capabilities, and evaluation strategies. Overall, the goal of this review is to unify technical advances and clinical needs for safe and responsible training of FMs in radiology to ultimately benefit patients, providers, and radiologists.
期刊介绍:
Published regularly since 1923 by the Radiological Society of North America (RSNA), Radiology has long been recognized as the authoritative reference for the most current, clinically relevant and highest quality research in the field of radiology. Each month the journal publishes approximately 240 pages of peer-reviewed original research, authoritative reviews, well-balanced commentary on significant articles, and expert opinion on new techniques and technologies.
Radiology publishes cutting edge and impactful imaging research articles in radiology and medical imaging in order to help improve human health.