{"title":"Deep Learning-Based Accelerated MR Cholangiopancreatography Without Fully-Sampled Data.","authors":"Jinho Kim, Marcel Dominik Nickel, Florian Knoll","doi":"10.1002/nbm.70002","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to accelerate MR cholangiopancreatography (MRCP) acquisitions using deep learning-based (DL) reconstruction at 3 and 0.55 T. A total of 35 healthy volunteers underwent conventional twofold accelerated MRCP scans at field strengths of 3 and 0.55 T. We trained DL reconstructions using two different training strategies, supervised (SV) and self-supervised (SSV), with retrospectively sixfold undersampled data obtained at 3 T. We then evaluated the DL reconstructions against standard techniques, parallel imaging (PI) and compressed sensing (CS), focusing on peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) as metrics. We also tested DL reconstructions with prospectively accelerated acquisitions and evaluated their robustness when changing fields strengths from 3 to 0.55 T. DL reconstructions demonstrated a reduction in average acquisition time from 599/542 to 255/180 s for MRCP at 3 T/0.55 T. In both retrospective and prospective undersampling, PSNR and SSIM of DL reconstructions were higher than those of PI and CS. At the same time, DL reconstructions preserved the image quality of undersampled data, including sharpness and the visibility of hepatobiliary ducts. In addition, both DL approaches produced high-quality reconstructions at 0.55 T. In summary, DL reconstructions trained for highly accelerated MRCP enabled a reduction in acquisition time by a factor of 2.4/3.0 at 3 T/0.55 T while maintaining the image quality of conventional acquisitions.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 3","pages":"e70002"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.70002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study was to accelerate MR cholangiopancreatography (MRCP) acquisitions using deep learning-based (DL) reconstruction at 3 and 0.55 T. A total of 35 healthy volunteers underwent conventional twofold accelerated MRCP scans at field strengths of 3 and 0.55 T. We trained DL reconstructions using two different training strategies, supervised (SV) and self-supervised (SSV), with retrospectively sixfold undersampled data obtained at 3 T. We then evaluated the DL reconstructions against standard techniques, parallel imaging (PI) and compressed sensing (CS), focusing on peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) as metrics. We also tested DL reconstructions with prospectively accelerated acquisitions and evaluated their robustness when changing fields strengths from 3 to 0.55 T. DL reconstructions demonstrated a reduction in average acquisition time from 599/542 to 255/180 s for MRCP at 3 T/0.55 T. In both retrospective and prospective undersampling, PSNR and SSIM of DL reconstructions were higher than those of PI and CS. At the same time, DL reconstructions preserved the image quality of undersampled data, including sharpness and the visibility of hepatobiliary ducts. In addition, both DL approaches produced high-quality reconstructions at 0.55 T. In summary, DL reconstructions trained for highly accelerated MRCP enabled a reduction in acquisition time by a factor of 2.4/3.0 at 3 T/0.55 T while maintaining the image quality of conventional acquisitions.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.