Deep Learning-Based Accelerated MR Cholangiopancreatography Without Fully-Sampled Data.

IF 2.7 4区 医学 Q2 BIOPHYSICS
Jinho Kim, Marcel Dominik Nickel, Florian Knoll
{"title":"Deep Learning-Based Accelerated MR Cholangiopancreatography Without Fully-Sampled Data.","authors":"Jinho Kim, Marcel Dominik Nickel, Florian Knoll","doi":"10.1002/nbm.70002","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to accelerate MR cholangiopancreatography (MRCP) acquisitions using deep learning-based (DL) reconstruction at 3 and 0.55 T. A total of 35 healthy volunteers underwent conventional twofold accelerated MRCP scans at field strengths of 3 and 0.55 T. We trained DL reconstructions using two different training strategies, supervised (SV) and self-supervised (SSV), with retrospectively sixfold undersampled data obtained at 3 T. We then evaluated the DL reconstructions against standard techniques, parallel imaging (PI) and compressed sensing (CS), focusing on peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) as metrics. We also tested DL reconstructions with prospectively accelerated acquisitions and evaluated their robustness when changing fields strengths from 3 to 0.55 T. DL reconstructions demonstrated a reduction in average acquisition time from 599/542 to 255/180 s for MRCP at 3 T/0.55 T. In both retrospective and prospective undersampling, PSNR and SSIM of DL reconstructions were higher than those of PI and CS. At the same time, DL reconstructions preserved the image quality of undersampled data, including sharpness and the visibility of hepatobiliary ducts. In addition, both DL approaches produced high-quality reconstructions at 0.55 T. In summary, DL reconstructions trained for highly accelerated MRCP enabled a reduction in acquisition time by a factor of 2.4/3.0 at 3 T/0.55 T while maintaining the image quality of conventional acquisitions.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 3","pages":"e70002"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.70002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study was to accelerate MR cholangiopancreatography (MRCP) acquisitions using deep learning-based (DL) reconstruction at 3 and 0.55 T. A total of 35 healthy volunteers underwent conventional twofold accelerated MRCP scans at field strengths of 3 and 0.55 T. We trained DL reconstructions using two different training strategies, supervised (SV) and self-supervised (SSV), with retrospectively sixfold undersampled data obtained at 3 T. We then evaluated the DL reconstructions against standard techniques, parallel imaging (PI) and compressed sensing (CS), focusing on peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) as metrics. We also tested DL reconstructions with prospectively accelerated acquisitions and evaluated their robustness when changing fields strengths from 3 to 0.55 T. DL reconstructions demonstrated a reduction in average acquisition time from 599/542 to 255/180 s for MRCP at 3 T/0.55 T. In both retrospective and prospective undersampling, PSNR and SSIM of DL reconstructions were higher than those of PI and CS. At the same time, DL reconstructions preserved the image quality of undersampled data, including sharpness and the visibility of hepatobiliary ducts. In addition, both DL approaches produced high-quality reconstructions at 0.55 T. In summary, DL reconstructions trained for highly accelerated MRCP enabled a reduction in acquisition time by a factor of 2.4/3.0 at 3 T/0.55 T while maintaining the image quality of conventional acquisitions.

基于深度学习的无全采样数据加速MR胆管造影。
本研究的目的是使用基于深度学习的(DL)重建在3和0.55 T加速MR胆管胰胆管造影(MRCP)获取。共有35名健康志愿者在场强为3和0.55 T的情况下接受了常规的两次MRCP加速扫描。我们使用两种不同的训练策略,监督(SV)和自监督(SSV)训练深度学习重建,并在3 T时获得六倍欠采样数据。然后,我们根据标准技术,平行成像(PI)和压缩感知(CS)评估DL重建,重点关注峰值信噪比(PSNR)和结构相似性(SSIM)作为指标。我们还测试了具有预期加速采集的深度学习重建,并评估了将场强度从3到0.55 T变化时的鲁棒性。DL重建显示,在3 T/0.55 T时,MRCP的平均采集时间从599/542缩短到255/180 s。在回顾性和前瞻性欠采样中,DL重建的PSNR和SSIM均高于PI和CS。同时,DL重建保留了欠采样数据的图像质量,包括清晰度和肝胆管的可见性。此外,两种深度学习方法在0.55 T下都产生了高质量的重建。总之,经过高度加速MRCP训练的深度学习重建在3 T/0.55 T下可以将采集时间减少2.4/3.0倍,同时保持传统采集的图像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信