Quantitative Analysis of Grain Boundary Segregation of Boron in Steel with Secondary-Ion Mass Spectrometry in Comparison to Atom Probe Tomography.

IF 2.9 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jun Takahashi, Kazuto Kawakami, Naoyoshi Kubota, Takae Jinnai
{"title":"Quantitative Analysis of Grain Boundary Segregation of Boron in Steel with Secondary-Ion Mass Spectrometry in Comparison to Atom Probe Tomography.","authors":"Jun Takahashi, Kazuto Kawakami, Naoyoshi Kubota, Takae Jinnai","doi":"10.1093/mam/ozae137","DOIUrl":null,"url":null,"abstract":"<p><p>To identify the origin of high intensities of BO2- signals on grain boundaries (GBs) in boron (B) mapping using secondary-ion mass spectrometry (SIMS), atom probe tomography analysis was performed on high-brightness GBs in the steel with the addition of B. Homogeneous segregation of B atoms as a solid solution, rather than continuous GB precipitation of fine boride, was observed at the GBs. The amounts of B segregation varied between the GBs. An estimation of the incident angle of the GB from the sample surface in each GB indicated that the high-brightness GBs always have smaller incident angles than the median angle under the assumption of random GB orientation, resulting in an increase in the GB area in the SIMS analyzed region. The product of the actual B segregation amount and area increase factor roughly corresponded to the apparent B intensity of the GB in B-mapping with SIMS. The high brightness in the B-mapping originated mainly from small incident angles of GB from the sample surface in the steel. The incident angle of the GB plane must be considered for quantification of GB segregation of B in the SIMS analysis.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae137","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To identify the origin of high intensities of BO2- signals on grain boundaries (GBs) in boron (B) mapping using secondary-ion mass spectrometry (SIMS), atom probe tomography analysis was performed on high-brightness GBs in the steel with the addition of B. Homogeneous segregation of B atoms as a solid solution, rather than continuous GB precipitation of fine boride, was observed at the GBs. The amounts of B segregation varied between the GBs. An estimation of the incident angle of the GB from the sample surface in each GB indicated that the high-brightness GBs always have smaller incident angles than the median angle under the assumption of random GB orientation, resulting in an increase in the GB area in the SIMS analyzed region. The product of the actual B segregation amount and area increase factor roughly corresponded to the apparent B intensity of the GB in B-mapping with SIMS. The high brightness in the B-mapping originated mainly from small incident angles of GB from the sample surface in the steel. The incident angle of the GB plane must be considered for quantification of GB segregation of B in the SIMS analysis.

二次离子质谱法定量分析钢中硼的晶界偏析与原子探针层析成像的比较。
为了利用二次离子质谱法(SIMS)确定硼(B)成像中晶界(GB)上高强度BO2-信号的来源,对添加B的钢中的高亮度GB进行了原子探针层析分析。在GB处观察到B原子作为固溶体均匀偏析,而不是连续的细硼化物沉淀。不同gb的B偏析量不同。从每个GB的样品表面估计GB的入射角表明,在随机GB取向假设下,高亮度GB的入射角总是小于中位数角,导致SIMS分析区域的GB面积增加。实际B偏析量与面积增加因子的乘积大致对应于SIMS测B时GB的表观B强度。b图的高亮度主要来源于试样表面GB的入射角小。在SIMS分析中,为了量化B的GB偏析,必须考虑GB平面的入射角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microscopy and Microanalysis
Microscopy and Microanalysis 工程技术-材料科学:综合
CiteScore
1.10
自引率
10.70%
发文量
1391
审稿时长
6 months
期刊介绍: Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信