Jess D Hebert, Yuning J Tang, Márton Szamecz, Laura Andrejka, Steven S Lopez, Dmitri A Petrov, Gábor Boross, Monte M Winslow
{"title":"Combinatorial in vivo genome editing identifies widespread epistasis and an accessible fitness landscape during lung tumorigenesis.","authors":"Jess D Hebert, Yuning J Tang, Márton Szamecz, Laura Andrejka, Steven S Lopez, Dmitri A Petrov, Gábor Boross, Monte M Winslow","doi":"10.1093/molbev/msaf023","DOIUrl":null,"url":null,"abstract":"<p><p>Lung adenocarcinoma, the most common subtype of lung cancer, is genomically complex, with tumors containing tens to hundreds of non-synonymous mutations. However, little is understood about how genes interact with each other to enable the evolution of cancer in vivo, largely due to a lack of methods for investigating genetic interactions in a high-throughput and quantitative manner. Here, we employed a novel platform to generate tumors with inactivation of pairs of ten diverse tumor suppressor genes within an autochthonous mouse model of oncogenic KRAS-driven lung cancer. By quantifying the fitness of tumors with every single and double mutant genotype, we show that most tumor suppressor genetic interactions exhibited negative epistasis, with diminishing returns on tumor fitness. In contrast, Apc inactivation showed positive epistasis with the inactivation of several other genes, including synergistic effects on tumor fitness in combination with Lkb1 or Nf1 inactivation. Sign epistasis was extremely rare, suggesting a surprisingly accessible fitness landscape during lung tumorigenesis. These findings expand our understanding of the evolutionary interactions that drive tumorigenesis in vivo.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msaf023","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lung adenocarcinoma, the most common subtype of lung cancer, is genomically complex, with tumors containing tens to hundreds of non-synonymous mutations. However, little is understood about how genes interact with each other to enable the evolution of cancer in vivo, largely due to a lack of methods for investigating genetic interactions in a high-throughput and quantitative manner. Here, we employed a novel platform to generate tumors with inactivation of pairs of ten diverse tumor suppressor genes within an autochthonous mouse model of oncogenic KRAS-driven lung cancer. By quantifying the fitness of tumors with every single and double mutant genotype, we show that most tumor suppressor genetic interactions exhibited negative epistasis, with diminishing returns on tumor fitness. In contrast, Apc inactivation showed positive epistasis with the inactivation of several other genes, including synergistic effects on tumor fitness in combination with Lkb1 or Nf1 inactivation. Sign epistasis was extremely rare, suggesting a surprisingly accessible fitness landscape during lung tumorigenesis. These findings expand our understanding of the evolutionary interactions that drive tumorigenesis in vivo.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.