Aberrant accumulation of phosphorylated BRCA1 in brainstem-type and cortical-type Lewy bodies in Lewy body disease.

IF 3.2 3区 医学 Q2 CLINICAL NEUROLOGY
Masataka Nakamura, Aya Murakami, Dennis W Dickson, Yusuke Yakushiji
{"title":"Aberrant accumulation of phosphorylated BRCA1 in brainstem-type and cortical-type Lewy bodies in Lewy body disease.","authors":"Masataka Nakamura, Aya Murakami, Dennis W Dickson, Yusuke Yakushiji","doi":"10.1093/jnen/nlaf004","DOIUrl":null,"url":null,"abstract":"<p><p>BRCA1 plays important roles in several biological events during the DNA damage response (DDR). We aimed to determine whether cytoplasmic accumulation of BRCA1 or its phosphorylated form, pBRCA1, is specific to cytoplasmic inclusions in tauopathies, or if it also occurs in α-synuclein-positive inclusions in Lewy body disease (LBD). Using brain tissue from pure LBD, LBD with Alzheimer disease (AD) co-pathology (LBD-AD), and control cases, the immunohistochemical distributions of BRCA1, pBRCA1, its binding partner BARD1, and 53BP1 were examined. The results showed that pBRCA1 (Ser1423) and BARD1 accumulated in brainstem-type Lewy bodies (LBs), whereas only pBRCA1 (Ser1423) was present in cortical-type LBs. There was no significant difference in the frequency of pBRCA1 (Ser1423)-positive LBs between the pure LBD and LBD-AD cases. pBRCA1 (Ser1423) was minimally detected in neuronal nuclei in controls and was absent in neuronal nuclei in LBD cases. In control and LBD cases, 53BP1-immunoreactive deposits were present in the neuronal nuclei. Thus, DDR dysfunction due to cytoplasmic sequestration of pBRCA1 (Ser1423) may play a role in LBD pathogenesis. Additionally, the selective accumulation of BARD1 in brainstem-type LBs, but not cortical-type LBs, points to distinct mechanisms in the formation of these inclusion types, offering further insights into LBD pathology.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuropathology and Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jnen/nlaf004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BRCA1 plays important roles in several biological events during the DNA damage response (DDR). We aimed to determine whether cytoplasmic accumulation of BRCA1 or its phosphorylated form, pBRCA1, is specific to cytoplasmic inclusions in tauopathies, or if it also occurs in α-synuclein-positive inclusions in Lewy body disease (LBD). Using brain tissue from pure LBD, LBD with Alzheimer disease (AD) co-pathology (LBD-AD), and control cases, the immunohistochemical distributions of BRCA1, pBRCA1, its binding partner BARD1, and 53BP1 were examined. The results showed that pBRCA1 (Ser1423) and BARD1 accumulated in brainstem-type Lewy bodies (LBs), whereas only pBRCA1 (Ser1423) was present in cortical-type LBs. There was no significant difference in the frequency of pBRCA1 (Ser1423)-positive LBs between the pure LBD and LBD-AD cases. pBRCA1 (Ser1423) was minimally detected in neuronal nuclei in controls and was absent in neuronal nuclei in LBD cases. In control and LBD cases, 53BP1-immunoreactive deposits were present in the neuronal nuclei. Thus, DDR dysfunction due to cytoplasmic sequestration of pBRCA1 (Ser1423) may play a role in LBD pathogenesis. Additionally, the selective accumulation of BARD1 in brainstem-type LBs, but not cortical-type LBs, points to distinct mechanisms in the formation of these inclusion types, offering further insights into LBD pathology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
6.20%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Journal of Neuropathology & Experimental Neurology is the official journal of the American Association of Neuropathologists, Inc. (AANP). The journal publishes peer-reviewed studies on neuropathology and experimental neuroscience, book reviews, letters, and Association news, covering a broad spectrum of fields in basic neuroscience with an emphasis on human neurological diseases. It is written by and for neuropathologists, neurologists, neurosurgeons, pathologists, psychiatrists, and basic neuroscientists from around the world. Publication has been continuous since 1942.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信