Rhopalurus junceus scorpion venom induces G2/M cell cycle arrest and apoptotic cell death in human non-small lung cancer cell lines.

IF 1.8 3区 医学 Q4 TOXICOLOGY
Alexis Díaz-García, Ángel Garrido, Jenny Laura Ruiz-Fuentes, Tamara Hermosilla, Diego Varela
{"title":"<i>Rhopalurus junceus</i> scorpion venom induces G2/M cell cycle arrest and apoptotic cell death in human non-small lung cancer cell lines.","authors":"Alexis Díaz-García, Ángel Garrido, Jenny Laura Ruiz-Fuentes, Tamara Hermosilla, Diego Varela","doi":"10.1590/1678-9199-JVATITD-2024-0035","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Non-small cell lung cancers (NSCLC) represent the primary cause of cancer-related deaths worldwide. <i>Rhopalurus junceus</i> venom has been shown to exert cytotoxic effects against a panel of epithelial cancer cells <i>in vitro</i> and suggested that NSCLC was the subtype most susceptible to the treatment.</p><p><strong>Methods: </strong>This study evaluated the effect of <i>Rhopalurus junceus</i> scorpion venom on cell viability, in non-cancerous (MRC-5, lung; CHO-K1, ovary) and NSCLC (A549; NCI-H460) cell lines. The effects on cell cycle, apoptosis, and cell signaling-related proteins were determined by flow cytometry and WB. Protein fractions responsible for the observed effect were identified using HPLC.</p><p><strong>Results: </strong>Scorpion venom was more effective against NSCLC than non-cancerous cells. E<sub>max</sub> values were 20.0 ± 5.8% and 22.47 ± 6.02% in A549 and NCI-H460 cancer cells, respectively, as compared to 50 ± 8.1% in MRC-5 and 54.99 ± 7.39% in CHO-K1 cells. It arrested NSCLC cells in the G2/M phase, while non-cancerous cells were arrested in the S (MRC-5) or G0/G1 (CHO-K1) phases. No changes were observed in the Bax/Bcl-2 or the cleaved-caspase 3/Total caspase 3 ratios in cells treated with venom. Likewise, the scorpion venom treatment did not affect p-ERK, p-AKT, or p-38MAPK protein levels. In contrast, scorpion venom treatment increased the cytosolic apoptosis-inducing factor (AIF) in A549 cells, indicating caspase-independent apoptosis. Additionally, combined etoposide/venom exposure provoked G2/M arrest and apoptosis in NSCLC more strongly than either substance alone. Furthermore, upon crude venom fractioning through RP-HPLC, we found two soluble fractions with high cytotoxic effects.</p><p><strong>Conclusion: </strong>The present study concludes that a specific fraction of <i>Rhopalurus junceus</i> venom reduces cell viability of NSCLC cells. The AIF protein plays a key role in mediating caspase-independent apoptotic cell death. These findings suggest that <i>Rhopalurus junceus</i> venom enhances the anticancer effect of etoposide <i>in vitro</i> by causing cell cycle arrest and caspase-independent apoptosis.</p>","PeriodicalId":17565,"journal":{"name":"Journal of Venomous Animals and Toxins Including Tropical Diseases","volume":"31 ","pages":"e20240035"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792888/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Venomous Animals and Toxins Including Tropical Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/1678-9199-JVATITD-2024-0035","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Non-small cell lung cancers (NSCLC) represent the primary cause of cancer-related deaths worldwide. Rhopalurus junceus venom has been shown to exert cytotoxic effects against a panel of epithelial cancer cells in vitro and suggested that NSCLC was the subtype most susceptible to the treatment.

Methods: This study evaluated the effect of Rhopalurus junceus scorpion venom on cell viability, in non-cancerous (MRC-5, lung; CHO-K1, ovary) and NSCLC (A549; NCI-H460) cell lines. The effects on cell cycle, apoptosis, and cell signaling-related proteins were determined by flow cytometry and WB. Protein fractions responsible for the observed effect were identified using HPLC.

Results: Scorpion venom was more effective against NSCLC than non-cancerous cells. Emax values were 20.0 ± 5.8% and 22.47 ± 6.02% in A549 and NCI-H460 cancer cells, respectively, as compared to 50 ± 8.1% in MRC-5 and 54.99 ± 7.39% in CHO-K1 cells. It arrested NSCLC cells in the G2/M phase, while non-cancerous cells were arrested in the S (MRC-5) or G0/G1 (CHO-K1) phases. No changes were observed in the Bax/Bcl-2 or the cleaved-caspase 3/Total caspase 3 ratios in cells treated with venom. Likewise, the scorpion venom treatment did not affect p-ERK, p-AKT, or p-38MAPK protein levels. In contrast, scorpion venom treatment increased the cytosolic apoptosis-inducing factor (AIF) in A549 cells, indicating caspase-independent apoptosis. Additionally, combined etoposide/venom exposure provoked G2/M arrest and apoptosis in NSCLC more strongly than either substance alone. Furthermore, upon crude venom fractioning through RP-HPLC, we found two soluble fractions with high cytotoxic effects.

Conclusion: The present study concludes that a specific fraction of Rhopalurus junceus venom reduces cell viability of NSCLC cells. The AIF protein plays a key role in mediating caspase-independent apoptotic cell death. These findings suggest that Rhopalurus junceus venom enhances the anticancer effect of etoposide in vitro by causing cell cycle arrest and caspase-independent apoptosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
8.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Journal of Venomous Animals and Toxins including Tropical Diseases (JVATiTD) is a non-commercial academic open access publication dedicated to research on all aspects of toxinology, venomous animals and tropical diseases. Its interdisciplinary content includes original scientific articles covering research on toxins derived from animals, plants and microorganisms. Topics of interest include, but are not limited to:systematics and morphology of venomous animals;physiology, biochemistry, pharmacology and immunology of toxins;epidemiology, clinical aspects and treatment of envenoming by different animals, plants and microorganisms;development and evaluation of antivenoms and toxin-derivative products;epidemiology, clinical aspects and treatment of tropical diseases (caused by virus, bacteria, algae, fungi and parasites) including the neglected tropical diseases (NTDs) defined by the World Health Organization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信