Enhancing microbial predator-prey detection with network and trait-based analyses.

IF 13.8 1区 生物学 Q1 MICROBIOLOGY
Cristina Martínez Rendón, Christina Braun, Maria Kappelsberger, Jens Boy, Angélica Casanova-Katny, Karin Glaser, Kenneth Dumack
{"title":"Enhancing microbial predator-prey detection with network and trait-based analyses.","authors":"Cristina Martínez Rendón, Christina Braun, Maria Kappelsberger, Jens Boy, Angélica Casanova-Katny, Karin Glaser, Kenneth Dumack","doi":"10.1186/s40168-025-02035-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Network analyses are often applied to microbial communities using sequencing survey datasets. However, associations in such networks do not necessarily indicate actual biotic interactions, and even if they do, the nature of the interactions commonly remains unclear. While network analyses are valuable for generating hypotheses, the inferred hypotheses are rarely experimentally confirmed.</p><p><strong>Results: </strong>We employed cross-kingdom network analyses, applied trait-based functions to the microorganisms, and subsequently experimentally investigated the found putative predator-prey interactions to evaluate whether, and to what extent, correlations indicate actual predator-prey relationships. For this, we investigated algae and their protistan predators in biocrusts of three distinct polar regions, i.e., Svalbard, the Antarctic Peninsula, and Continental Antarctica. Network analyses using FlashWeave indicated that 89, 138, and 51 correlations occurred between predatory protists and algae, respectively. However, trait assignment revealed that only 4.7-9.3% of said correlations link predators to actually suitable prey. We further confirmed these results with HMSC modeling, which resulted in similar numbers of 7.5% and 4.8% linking predators to suitable prey for full co-occurrence and abundance models, respectively. The combination of network analyses and trait assignment increased confidence in the prediction of predator-prey interactions, as we show that 82% of all experimentally investigated correlations could be verified. Furthermore, we found that more vicious predators, i.e., predators with the highest growth rate in co-culture with their prey, exhibit higher stress and betweenness centrality - giving rise to the future possibility of determining important predators from their network statistics.</p><p><strong>Conclusions: </strong>Our results support the idea of using network analyses for inferring predator-prey interactions, but at the same time call for cautionary consideration of the results, by combining them with trait-based approaches to increase confidence in the prediction of biological interactions. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"37"},"PeriodicalIF":13.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792678/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02035-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Network analyses are often applied to microbial communities using sequencing survey datasets. However, associations in such networks do not necessarily indicate actual biotic interactions, and even if they do, the nature of the interactions commonly remains unclear. While network analyses are valuable for generating hypotheses, the inferred hypotheses are rarely experimentally confirmed.

Results: We employed cross-kingdom network analyses, applied trait-based functions to the microorganisms, and subsequently experimentally investigated the found putative predator-prey interactions to evaluate whether, and to what extent, correlations indicate actual predator-prey relationships. For this, we investigated algae and their protistan predators in biocrusts of three distinct polar regions, i.e., Svalbard, the Antarctic Peninsula, and Continental Antarctica. Network analyses using FlashWeave indicated that 89, 138, and 51 correlations occurred between predatory protists and algae, respectively. However, trait assignment revealed that only 4.7-9.3% of said correlations link predators to actually suitable prey. We further confirmed these results with HMSC modeling, which resulted in similar numbers of 7.5% and 4.8% linking predators to suitable prey for full co-occurrence and abundance models, respectively. The combination of network analyses and trait assignment increased confidence in the prediction of predator-prey interactions, as we show that 82% of all experimentally investigated correlations could be verified. Furthermore, we found that more vicious predators, i.e., predators with the highest growth rate in co-culture with their prey, exhibit higher stress and betweenness centrality - giving rise to the future possibility of determining important predators from their network statistics.

Conclusions: Our results support the idea of using network analyses for inferring predator-prey interactions, but at the same time call for cautionary consideration of the results, by combining them with trait-based approaches to increase confidence in the prediction of biological interactions. Video Abstract.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbiome
Microbiome MICROBIOLOGY-
CiteScore
21.90
自引率
2.60%
发文量
198
审稿时长
4 weeks
期刊介绍: Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信