{"title":"Global biogeography and projection of antimicrobial toxin genes.","authors":"Ya Liu, Yu Geng, Yiru Jiang, Jingyu Sun, Peng Li, Yue-Zhong Li, Zheng Zhang","doi":"10.1186/s40168-025-02038-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Antimicrobial toxin genes (ATGs) encode potent antimicrobial weapons in nature that rival antibiotics, significantly impacting microbial survival and offering potential benefits for human health. However, the drivers of their global diversity and biogeography remain unknown.</p><p><strong>Results: </strong>Here, we identified 4400 ATG clusters from 149 families by correlating 10,000 samples worldwide with over 200,000 microbial genome data. We demonstrated that global microbial communities universally encode complex and diverse ATGs, with widespread differences across various habitats. Most ATG clusters were rare within habitats but were shared among habitats. Compared with those in animal-associated habitats, ATG clusters in human-associated habitats exhibit greater diversity and a greater proportion of sharing with natural habitats. We generated a global atlas of ATG distribution, identifying anthropogenic factors as crucial in explaining ATG diversity hotspots.</p><p><strong>Conclusions: </strong>Our study provides baseline information on the global distribution of antimicrobial toxins by combining community samples, genome sequences, and environmental constraints. Our results highlight the natural environment as a reservoir of antimicrobial toxins, advance the understanding of the global distribution of these antimicrobial weapons, and aid their application in clinical, agricultural, and industrial fields. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"40"},"PeriodicalIF":13.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796102/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02038-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Antimicrobial toxin genes (ATGs) encode potent antimicrobial weapons in nature that rival antibiotics, significantly impacting microbial survival and offering potential benefits for human health. However, the drivers of their global diversity and biogeography remain unknown.
Results: Here, we identified 4400 ATG clusters from 149 families by correlating 10,000 samples worldwide with over 200,000 microbial genome data. We demonstrated that global microbial communities universally encode complex and diverse ATGs, with widespread differences across various habitats. Most ATG clusters were rare within habitats but were shared among habitats. Compared with those in animal-associated habitats, ATG clusters in human-associated habitats exhibit greater diversity and a greater proportion of sharing with natural habitats. We generated a global atlas of ATG distribution, identifying anthropogenic factors as crucial in explaining ATG diversity hotspots.
Conclusions: Our study provides baseline information on the global distribution of antimicrobial toxins by combining community samples, genome sequences, and environmental constraints. Our results highlight the natural environment as a reservoir of antimicrobial toxins, advance the understanding of the global distribution of these antimicrobial weapons, and aid their application in clinical, agricultural, and industrial fields. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.