Possible new mechanisms of primary drug resistance in NSCLC with EGFR mutation treated with Osimertinib

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
IUBMB Life Pub Date : 2025-02-05 DOI:10.1002/iub.70002
Lujing Shao, Tong Li, Xinyan Jia, Xinyu Zhang, Qi Li, Chunyan Dong
{"title":"Possible new mechanisms of primary drug resistance in NSCLC with EGFR mutation treated with Osimertinib","authors":"Lujing Shao,&nbsp;Tong Li,&nbsp;Xinyan Jia,&nbsp;Xinyu Zhang,&nbsp;Qi Li,&nbsp;Chunyan Dong","doi":"10.1002/iub.70002","DOIUrl":null,"url":null,"abstract":"<p>In this study, a patient with lung adenocarcinoma harboring an EGFR mutation exhibited primary resistance to the targeted EGFR inhibitor Osimertinib after 2 months of treatment. As the disease advanced, further genetic analysis revealed the emergence of additional mutations in ARID1A, NTRK1, and ZRSR2, alongside the existing EGFR mutation. Subsequent treatment with Pemetrexed resulted in a significant reduction in liver metastases. Protein mass spectrometry sequencing and immunohistochemical analysis collectively indicated that the PI3K/mTOR pathway mediates the mechanism through which these gene mutations confer primary drug resistance. Evidence demonstrates that the co-occurrence of EGFR and ARID1A mutations diminishes the efficacy of EGFR tyrosine kinase inhibitors (EGFR TKIs). Consequently, it is hypothesized that mutations in NTRK1 and ZRSR2, which are implicated in the PI3K/mTOR pathway, contribute to the primary resistance observed with Osimertinib treatment. In this case, the illness was effectively managed through prompt adjustments to the treatment regimen and the rapid administration of chemotherapy drugs. This finding also constitutes the first evidence that mutations in NTRK1 and ZRSR2 are pivotal in the development of primary resistance to Osimertinib. Consequently, it is imperative to conduct genetic testing at the earliest opportunity and modify the treatment plan accordingly.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"77 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/iub.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUBMB Life","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/iub.70002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a patient with lung adenocarcinoma harboring an EGFR mutation exhibited primary resistance to the targeted EGFR inhibitor Osimertinib after 2 months of treatment. As the disease advanced, further genetic analysis revealed the emergence of additional mutations in ARID1A, NTRK1, and ZRSR2, alongside the existing EGFR mutation. Subsequent treatment with Pemetrexed resulted in a significant reduction in liver metastases. Protein mass spectrometry sequencing and immunohistochemical analysis collectively indicated that the PI3K/mTOR pathway mediates the mechanism through which these gene mutations confer primary drug resistance. Evidence demonstrates that the co-occurrence of EGFR and ARID1A mutations diminishes the efficacy of EGFR tyrosine kinase inhibitors (EGFR TKIs). Consequently, it is hypothesized that mutations in NTRK1 and ZRSR2, which are implicated in the PI3K/mTOR pathway, contribute to the primary resistance observed with Osimertinib treatment. In this case, the illness was effectively managed through prompt adjustments to the treatment regimen and the rapid administration of chemotherapy drugs. This finding also constitutes the first evidence that mutations in NTRK1 and ZRSR2 are pivotal in the development of primary resistance to Osimertinib. Consequently, it is imperative to conduct genetic testing at the earliest opportunity and modify the treatment plan accordingly.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IUBMB Life
IUBMB Life 生物-生化与分子生物学
CiteScore
10.60
自引率
0.00%
发文量
109
审稿时长
4-8 weeks
期刊介绍: IUBMB Life is the flagship journal of the International Union of Biochemistry and Molecular Biology and is devoted to the rapid publication of the most novel and significant original research articles, reviews, and hypotheses in the broadly defined fields of biochemistry, molecular biology, cell biology, and molecular medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信