Luise Rauer, Amedeo De Tomassi, Christian L Müller, Claudia Hülpüsch, Claudia Traidl-Hoffmann, Matthias Reiger, Avidan U Neumann
{"title":"De-biasing microbiome sequencing data: bacterial morphology-based correction of extraction bias and correlates of chimera formation.","authors":"Luise Rauer, Amedeo De Tomassi, Christian L Müller, Claudia Hülpüsch, Claudia Traidl-Hoffmann, Matthias Reiger, Avidan U Neumann","doi":"10.1186/s40168-024-01998-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Microbiome amplicon sequencing data are distorted by multiple protocol-dependent biases from bacterial DNA extraction, contamination, sequence errors, and chimeras, hindering clinical microbiome applications. In particular, extraction bias is a major confounder in sequencing-based microbiome analyses, with no correction method available to date. Here, we suggest using mock community controls to computationally correct extraction bias based on bacterial morphological properties.</p><p><strong>Methods: </strong>We compared dilution series of 3 cell mock communities with an even or staggered composition. DNA of these mock, and additional skin microbiome samples, was extracted with 8 different extraction protocols (2 buffers, 2 extraction kits, 2 lysis conditions). Extracted DNA was sequenced (V1-V3 16S rRNA gene) together with corresponding DNA mocks.</p><p><strong>Results: </strong>Microbiome composition was significantly different between extraction kits and lysis conditions, but not between buffers. Independent of the extraction protocol, chimera formation increased with higher input cell numbers. Contaminants originated mostly from buffers, and considerable cross-contamination was observed in low-input samples. Comparing the microbiome composition of the cell mocks to corresponding DNA mocks revealed taxon-specific protocol-dependent extraction bias. Strikingly, this extraction bias per species was predictable by bacterial cell morphology. Morphology-based computational correction of extraction bias significantly improved resulting microbial compositions when applied to different mock samples, even with different taxa. Equivalent correction of the skin samples showed a substantial impact on microbiome compositions.</p><p><strong>Conclusions: </strong>Our results indicate that higher DNA density increases chimera formation during PCR amplification. Furthermore, we show that computational correction of extraction bias based on bacterial cell morphology would be feasible using appropriate positive controls, thus constituting an important step toward overcoming protocol biases in microbiome analysis. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"38"},"PeriodicalIF":13.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-01998-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Microbiome amplicon sequencing data are distorted by multiple protocol-dependent biases from bacterial DNA extraction, contamination, sequence errors, and chimeras, hindering clinical microbiome applications. In particular, extraction bias is a major confounder in sequencing-based microbiome analyses, with no correction method available to date. Here, we suggest using mock community controls to computationally correct extraction bias based on bacterial morphological properties.
Methods: We compared dilution series of 3 cell mock communities with an even or staggered composition. DNA of these mock, and additional skin microbiome samples, was extracted with 8 different extraction protocols (2 buffers, 2 extraction kits, 2 lysis conditions). Extracted DNA was sequenced (V1-V3 16S rRNA gene) together with corresponding DNA mocks.
Results: Microbiome composition was significantly different between extraction kits and lysis conditions, but not between buffers. Independent of the extraction protocol, chimera formation increased with higher input cell numbers. Contaminants originated mostly from buffers, and considerable cross-contamination was observed in low-input samples. Comparing the microbiome composition of the cell mocks to corresponding DNA mocks revealed taxon-specific protocol-dependent extraction bias. Strikingly, this extraction bias per species was predictable by bacterial cell morphology. Morphology-based computational correction of extraction bias significantly improved resulting microbial compositions when applied to different mock samples, even with different taxa. Equivalent correction of the skin samples showed a substantial impact on microbiome compositions.
Conclusions: Our results indicate that higher DNA density increases chimera formation during PCR amplification. Furthermore, we show that computational correction of extraction bias based on bacterial cell morphology would be feasible using appropriate positive controls, thus constituting an important step toward overcoming protocol biases in microbiome analysis. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.