Image recognition technology for bituminous concrete reservoir panel cracks based on deep learning.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-02-04 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0318550
Kai Hu, Yang Ling, Jie Liu
{"title":"Image recognition technology for bituminous concrete reservoir panel cracks based on deep learning.","authors":"Kai Hu, Yang Ling, Jie Liu","doi":"10.1371/journal.pone.0318550","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting cracks in asphalt concrete slabs is challenging due to environmental factors like lighting changes, surface reflections, and weather conditions, which affect image quality and crack detection accuracy. This study introduces a novel deep learning-based anomaly model for effective crack detection. A large dataset of panel images was collected and processed using denoising, standardization, and data augmentation techniques, with crack areas labeled via LabelImg software. The core model is an improved Xception network, enhanced with an adaptive activation function, dynamic attention mechanism, and multi-level residual connections. These innovations optimize feature extraction, enhance feature weighting, and improve information transmission, significantly boosting accuracy and robustness. The improved model achieves a 97.6% accuracy and a Matthews correlation coefficient of 0.98, remaining stable under varying lighting conditions. This method not only provides a fresh approach to crack detection but also greatly enhances detection efficiency.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 2","pages":"e0318550"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0318550","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting cracks in asphalt concrete slabs is challenging due to environmental factors like lighting changes, surface reflections, and weather conditions, which affect image quality and crack detection accuracy. This study introduces a novel deep learning-based anomaly model for effective crack detection. A large dataset of panel images was collected and processed using denoising, standardization, and data augmentation techniques, with crack areas labeled via LabelImg software. The core model is an improved Xception network, enhanced with an adaptive activation function, dynamic attention mechanism, and multi-level residual connections. These innovations optimize feature extraction, enhance feature weighting, and improve information transmission, significantly boosting accuracy and robustness. The improved model achieves a 97.6% accuracy and a Matthews correlation coefficient of 0.98, remaining stable under varying lighting conditions. This method not only provides a fresh approach to crack detection but also greatly enhances detection efficiency.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信