Acetic acid enabled nuclear contrast enhancement in epi-mode quantitative phase imaging.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-02-01 Epub Date: 2025-02-04 DOI:10.1117/1.JBO.30.2.026501
Zhe Guang, Amunet Jacobs, Paloma Casteleiro Costa, Zhenmin Li, Francisco E Robles
{"title":"Acetic acid enabled nuclear contrast enhancement in epi-mode quantitative phase imaging.","authors":"Zhe Guang, Amunet Jacobs, Paloma Casteleiro Costa, Zhenmin Li, Francisco E Robles","doi":"10.1117/1.JBO.30.2.026501","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>The acetowhitening effect of acetic acid (AA) enhances light scattering of cell nuclei, an effect that has been widely leveraged to facilitate tissue inspection for (pre)cancerous lesions. Here, we show that a concomitant effect of acetowhitening-changes in refractive index composition-yields nuclear contrast enhancement in quantitative phase imaging (QPI) of thick tissue samples.</p><p><strong>Aim: </strong>We aim to explore how changes in refractive index composition during acetowhitening can be captured through a novel epi-mode 3D QPI technique called quantitative oblique back-illumination microscopy (qOBM). We also aim to demonstrate the potential of using a machine learning-based approach to convert qOBM images of fresh tissues into virtually AA-stained images.</p><p><strong>Approach: </strong>We implemented qOBM, an imaging technique that allows for epi-mode 3D QPI to observe phase changes induced by AA in thick tissue samples. We focus on detecting nuclear contrast changes caused by AA in mouse brain samples. As a proof of concept, we also applied a Cycle-GAN algorithm to convert the acquired qOBM images into virtually AA-stained images, simulating the effect of AA staining.</p><p><strong>Results: </strong>Our findings demonstrate that AA-induced acetowhitening leads to significant nuclear contrast enhancement in qOBM images of thick tissue samples. In addition, the Cycle-GAN algorithm successfully converted qOBM images into virtually AA-stained images, further facilitating the nuclear enhancement process without any physical stains.</p><p><strong>Conclusions: </strong>We show that the acetowhitening effect of acetic acid induces changes in refractive index composition that significantly enhance nuclear contrast in QPI. The application of qOBM with AA, along with the use of a Cycle-GAN algorithm to virtually stain tissues, highlights the potential of this approach for advancing label-free and slide-free, <i>ex vivo</i>, and <i>in vivo</i> histology.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 2","pages":"026501"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792252/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.2.026501","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: The acetowhitening effect of acetic acid (AA) enhances light scattering of cell nuclei, an effect that has been widely leveraged to facilitate tissue inspection for (pre)cancerous lesions. Here, we show that a concomitant effect of acetowhitening-changes in refractive index composition-yields nuclear contrast enhancement in quantitative phase imaging (QPI) of thick tissue samples.

Aim: We aim to explore how changes in refractive index composition during acetowhitening can be captured through a novel epi-mode 3D QPI technique called quantitative oblique back-illumination microscopy (qOBM). We also aim to demonstrate the potential of using a machine learning-based approach to convert qOBM images of fresh tissues into virtually AA-stained images.

Approach: We implemented qOBM, an imaging technique that allows for epi-mode 3D QPI to observe phase changes induced by AA in thick tissue samples. We focus on detecting nuclear contrast changes caused by AA in mouse brain samples. As a proof of concept, we also applied a Cycle-GAN algorithm to convert the acquired qOBM images into virtually AA-stained images, simulating the effect of AA staining.

Results: Our findings demonstrate that AA-induced acetowhitening leads to significant nuclear contrast enhancement in qOBM images of thick tissue samples. In addition, the Cycle-GAN algorithm successfully converted qOBM images into virtually AA-stained images, further facilitating the nuclear enhancement process without any physical stains.

Conclusions: We show that the acetowhitening effect of acetic acid induces changes in refractive index composition that significantly enhance nuclear contrast in QPI. The application of qOBM with AA, along with the use of a Cycle-GAN algorithm to virtually stain tissues, highlights the potential of this approach for advancing label-free and slide-free, ex vivo, and in vivo histology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信